Skip to main content

error trapping - Check does not interrupt evaluation of the expression when a Message is emitted



On the surface, Check looks like a good method to use when you need to abort the evaluation of an expression whenever a Message is emitted. Unfortunately, as the following code demonstrates, the evaluation of the expression is completed after a Message has occurred.


(* the test message *)
Test::wrpt = "Negative point at `1`";

dat = RandomReal[1, 500];

(* without Check *)
woCheck = MapIndexed[
If[# < 0,
Message[Test::wrpt, #2[[1]]]; Unevaluated[Sequence[]],

#] &,
{-1}~Join~dat];

(* with Check *)
res = {};
Check[
MapIndexed[
If[# < 0,
Message[Test::wrpt, #2[[1]]]; Unevaluated[Sequence[]],
res = {res, #}; #] &,

{-1}~Join~dat],
$Failed
]
(* Test::wrpt: Negative point at 1
$Failed
*)

But, when comparing the two


woCheck == Flatten@res
(* True *)


This implies, that for long running computations Check is not a good solution to abort a computation if an error Message is emitted. Can this be fixed?



Answer



A simple method for accomplishing this is to have Message Throw an error when it is called, interrupting the current execution. Here is a replacement for Check which does that, with the same calling signature:


ClearAll[InterruptingCheck]
SetAttributes[InterruptingCheck, HoldAll]

InterruptingCheck[expr_, failexpr_, msgs : {___MessageName } : {}] :=
Internal`InheritedBlock[{Message, $msgFlag},
(* Module localizes tag while not polluting the global namespace *)

Module[{ tag },
Unprotect[Message];
(*
Attach hook to message, where failexpr is thrown after the
first Message is raised. msgFlag is used to prevent recursion,
so that when msg is called the original def is used.
*)
msg : Message[m_, ___] /; ! TrueQ[$msgFlag] := Block[{$msgFlag = True},
msg;
If[Length@msgs == 0 || MemberQ[msgs, m], Throw[failexpr, tag]]];

Catch[expr, tag]
]
]

(* With Leonid's suggestion, this now works correctly. *)
InterruptingCheck[expr_, failexpr_, msgGroup_String] :=
Hold[msgGroup] /. $MessageGroups /.
Hold[messages_List] :> InterruptingCheck[expr, failexpr, messages]

\begin{Edit}



My original code for the supplying a message group failed to work correctly. The fix is shown above. It works by replacing msgGroup with the appropriate list of messages, but using Hold to prevent them from being replaced by their string equivalents. (That is part of the reason for the HoldAll attribute being used here, to begin with.) Then, the held messages are extracted from Hold and inserted into InterruptingCheck still held because of HoldAll.


\end{Edit}


When applied to the example in the question,


res2 = {};
InterruptingCheck[
MapIndexed[
If[# < 0,
Message[Test::wrpt, #2[[1]]]; Unevaluated[Sequence[]],
res2 = {res2, #}; #] &,
dat[[;; 10]]~Join~{-1}~Join~dat],

$Failed,
{Test::wrpt}
]
(* Test::wrpt: Negative point at 11
$Failed
*)

and res2 is


{0.288047, 0.026642, 0.361008, 0.28977, 0.573743, 
0.272747, 0.937062, 0.330572, 0.192807, 0.916764}


showing that it did stop execution at after the tenth element in the data.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...