Skip to main content

physics - Dynamic Euler–Bernoulli beam equation


I am trying to solve for the vibration of a Euler–Bernoulli beam. The equation is


2u(t,x)t2+4u(t,x)x4=0


For the boundary conditions I would like the displacement to be zero at the ends and with zero second derivative. This corresponds to pinned-pinned conditions. For time I will start with a displacement and no velocity.


In the future I would like to solve for a beam that is not uniform in thickness along the x-axis and for general initial conditions.


There is a similar problem in the NDEigensystem documentation here but this is for the standard wave equation which is only second order in space. However, I follow that example. First I define an initial displacement and try to solve the pde.



ClearAll[f];
f[x_] := x (1 - x)

tu = NDSolveValue[{
D[u[t, x], {t, 2}] + D[u[t, x], {x, 4}] == 0,
u[0, x] == f[x],
Derivative[1, 0][u][0, x] == 0,
DirichletCondition[u[t, x] == 0, True],
DirichletCondition[D[u[t, x], {x, 2}] == 0, True]
}, u, {t, 0, 1}, {x, 0, 1},

Method -> {"PDEDiscretization" -> "MethodOfLines"}];

This gives me the error


NDSolveValue::femcmsd: The spatial derivative order of the PDE may not exceed two.

Thus I proceed to supply two coupled differential equations one for displacement one for the second derivative (which is the bending moment). Thus I try to solve


tu = NDSolveValue[{
D[u[t, x], {t, 2}] + D[m[t, x], {x, 2}] == 0,
D[u[t, x], {x, 2}] == m[t, x],
u[0, x] == f[x],

Derivative[1, 0][u][0, x] == 0,
DirichletCondition[u[t, x] == 0, True],
DirichletCondition[m[t, x] == 0, True]
}, {u, m}, {t, 0, 1}, {x, 0, 1},
Method -> {"PDEDiscretization" -> "MethodOfLines"}];

However this also gives an error


NDSolveValue::ivone: Boundary values may only be specified for one independent variable. Initial values may only be specified at one value of the other independent variable.

I don't understand this error because I think I have done as asked... Can you help? Thanks





Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...