Skip to main content

physics - Dynamic Euler–Bernoulli beam equation


I am trying to solve for the vibration of a Euler–Bernoulli beam. The equation is


$\frac{\partial ^2u(t,x)}{\partial t^2}+\frac{\partial ^4u(t,x)}{\partial x^4}=0$


For the boundary conditions I would like the displacement to be zero at the ends and with zero second derivative. This corresponds to pinned-pinned conditions. For time I will start with a displacement and no velocity.


In the future I would like to solve for a beam that is not uniform in thickness along the x-axis and for general initial conditions.


There is a similar problem in the NDEigensystem documentation here but this is for the standard wave equation which is only second order in space. However, I follow that example. First I define an initial displacement and try to solve the pde.



ClearAll[f];
f[x_] := x (1 - x)

tu = NDSolveValue[{
D[u[t, x], {t, 2}] + D[u[t, x], {x, 4}] == 0,
u[0, x] == f[x],
Derivative[1, 0][u][0, x] == 0,
DirichletCondition[u[t, x] == 0, True],
DirichletCondition[D[u[t, x], {x, 2}] == 0, True]
}, u, {t, 0, 1}, {x, 0, 1},

Method -> {"PDEDiscretization" -> "MethodOfLines"}];

This gives me the error


NDSolveValue::femcmsd: The spatial derivative order of the PDE may not exceed two.

Thus I proceed to supply two coupled differential equations one for displacement one for the second derivative (which is the bending moment). Thus I try to solve


tu = NDSolveValue[{
D[u[t, x], {t, 2}] + D[m[t, x], {x, 2}] == 0,
D[u[t, x], {x, 2}] == m[t, x],
u[0, x] == f[x],

Derivative[1, 0][u][0, x] == 0,
DirichletCondition[u[t, x] == 0, True],
DirichletCondition[m[t, x] == 0, True]
}, {u, m}, {t, 0, 1}, {x, 0, 1},
Method -> {"PDEDiscretization" -> "MethodOfLines"}];

However this also gives an error


NDSolveValue::ivone: Boundary values may only be specified for one independent variable. Initial values may only be specified at one value of the other independent variable.

I don't understand this error because I think I have done as asked... Can you help? Thanks





Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

plotting - Magnifying Glass on a Plot

Although there is a trick in TEX magnifying glass but I want to know is there any function to magnifying glass on a plot with Mathematica ? For example for a function as Sin[x] and at x=Pi/6 Below, this is just a picture desired from the cited site. the image got huge unfortunately I don't know how can I change the size of an image here! Answer Insetting a magnified part of the original Plot A) by adding a new Plot of the specified range xPos = Pi/6; range = 0.2; f = Sin; xyMinMax = {{xPos - range, xPos + range}, {f[xPos] - range*GoldenRatio^-1, f[xPos] + range*GoldenRatio^-1}}; Plot[f[x], {x, 0, 5}, Epilog -> {Transparent, EdgeForm[Thick], Rectangle[Sequence @@ Transpose[xyMinMax]], Inset[Plot[f[x], {x, xPos - range, xPos + range}, Frame -> True, Axes -> False, PlotRange -> xyMinMax, ImageSize -> 270], {4., 0.5}]}, ImageSize -> 700] B) by adding a new Plot within a Circle mf = RegionMember[Disk[{xPos, f[xPos]}, {range, range/GoldenRatio}]] Show...