After having solved a Stokes flow problem in Mathematica on a subdomain RegionCapillary
, I would like to solve an advection-diffusion problem on a larger domain RegionShell
which contains the previous domain. This means taking the InterpolatingFunction
returned by NDSolve FEM
for the Stokes problem and setting it to zero everywhere on RegionShell
, so that the Stokes velocity field can be used in the advection term of the transport problem on RegionShell
. The solution, produced by Comsol, shows concentration boundary layers:
The left picture shows a solution of the velocity field $\boldsymbol{u}$ of the Stokes problem $\nabla\cdot\boldsymbol{u}=0, \nabla p=\mu\nabla^{2}\boldsymbol{u}$ solved on the domain RegionCapillary
. The right pictures shows a solution of concentration field $c$ from the advection-diffusion problem $Pe\boldsymbol{u}\cdot\nabla c=\nabla^{2}c$ solved on RegionShell
. Let's see if I can retrieve the Comsol solution in Mathematica.
RegionCapillary =
RegionUnion[Rectangle[{0, 0.1}, {0.9, 0.2}],
Rectangle[{0, 0.8}, {0.9, 0.9}],
Rectangle[{0.8, 0.2}, {0.9, 0.9}] ];
RegionShell = Rectangle[{0, 0}, {1, 1}];
<< NDSolve`FEM`
StokesOp := {
-Inactive[Laplacian][ u[x, y], {x, y}] + D[ p[x, y], x],
-Inactive[Laplacian][ v[x, y], {x, y}] + D[ p[x, y], y],
(* incompressibility div u = 0 *)
Div[{u[x, y], v[x, y]}, {x, y}]
} ;
bcs := {
DirichletCondition[p[x, y] == 10^3, x == 0 && y > 0.5],
DirichletCondition[p[x, y] == 0, x == 0 && y < 0.5],
DirichletCondition[{u[x, y] == 0., v[x, y] == 0.}, True]
};
Clear[xVel, yVel, pressure];
AbsoluteTiming[{xVel, yVel, pressure} =
NDSolveValue[{StokesOp == {0, 0, 0}, bcs}, {u, v,
p}, {x, y} \[Element] RegionCapillary,
Method -> {"FiniteElement",
"InterpolationOrder" -> {u -> 2, v -> 2, p -> 1},
"MeshOptions" -> {"MaxCellMeasure" -> 10^-4}}
]];
DensityPlot[Sqrt[
xVel[x, y]^2 + yVel[x, y]^2], {x, y} \[Element]
RegionCapillary,
PlotRange -> All, PlotLabel -> "velocity magnitude",
PlotPoints -> 30] // Quiet
This code produces the expected Stokes flow solution:
Here is my attempt to tackle the reaction-diffusion problem:
Pe = 10^2;
advectionOp :=
If[{x, y} \[Element] RegionCapillary,
Pe {xVel[x, y], yVel[x, y]}.Inactive[Grad][c[x, y], {x, y}], 0] -
Inactive[Laplacian][c[x, y], {x, y}]
bcs := {DirichletCondition[c[x, y] == 0, x == 0 && 0.8 < y < 0.9],
DirichletCondition[c[x, y] == 1, x > 0]};
AbsoluteTiming[
csol = NDSolveValue[{advectionOp ==
NeumannValue[0, x == 0 && ((0 < y < 0.8) || (0.9 < y < 1))],
bcs}, c, {x, y} \[Element] RegionShell,
Method -> {"FiniteElement", "InterpolationOrder" -> {c -> 2},
"MeshOptions" -> {"MaxCellMeasure" -> 10^-3}}]];
DensityPlot[csol[x, y], {x, y} \[Element] RegionShell,
PlotRange -> All, PlotLabel -> "x velocity", PlotPoints -> 30]
You can see that my advection term $\boldsymbol{u}\cdot\nabla c$ is practically ignored. In it, I am trying to ensure that $\boldsymbol{u}=0$ if outside of RegionCapillary
, but $\boldsymbol{u}$ taken from the previous NDSolve solution otherwise. You can see that my $c=0$ DirichletCondition
diffuses but no advection happens.
Please help me to fix this. I suspect the main problem lies in the line
advectionOp :=
If[{x, y} \[Element] mr,
Pe {xVel[x, y], yVel[x, y]}.Inactive[Grad][c[x, y], {x, y}], 0] -
Inactive[Laplacian][c[x, y], {x, y}]
in which the InterpolatingFunctions
called xVel, yVel
are defined over the domain RegionCapillary
Answer
First, I think that DirichletCondition[{u[x, y] == 0., v[x, y] == 0.}, True]
is not what you want, nor what you specified in COMSOL. I think you want something like this: DirichletCondition[{u[x, y] == 0., v[x, y] == 0.}, x > 0]
Then we get:
RegionCapillary =
RegionUnion[Rectangle[{0, 0.1}, {0.9, 0.2}],
Rectangle[{0, 0.8}, {0.9, 0.9}], Rectangle[{0.8, 0.2}, {0.9, 0.9}]];
RegionShell = Rectangle[{0, 0}, {1, 1}];
<< NDSolve`FEM`
StokesOp := {-Inactive[Laplacian][u[x, y], {x, y}] +
D[p[x, y], x], -Inactive[Laplacian][v[x, y], {x, y}] +
D[p[x, y], y],(*incompressibility div u=0*)
Div[{u[x, y], v[x, y]}, {x, y}]};
bcs := {DirichletCondition[p[x, y] == 10^3, x == 0 && y > 0.5],
DirichletCondition[p[x, y] == 0, x == 0 && y < 0.5],
DirichletCondition[{u[x, y] == 0., v[x, y] == 0.}, x > 0]};
Clear[xVel, yVel, pressure];
AbsoluteTiming[{xVel, yVel, pressure} =
NDSolveValue[{StokesOp == {0, 0, 0}, bcs}, {u, v,
p}, {x, y} \[Element] RegionCapillary,
Method -> {"FiniteElement",
"InterpolationOrder" -> {u -> 2, v -> 2, p -> 1},
"MeshOptions" -> {"MaxCellMeasure" -> 10^-4}},
"ExtrapolationHandler" -> {0. &, "WarningMessage" -> False}];]
For making the interpolating function 0. outside the region you could set the "ExtrapolationHandler" -> {0. &, "WarningMessage" -> False}
like documented in the Extrapolation of Solution Domains section,
DensityPlot[
Sqrt[xVel[x, y]^2 + yVel[x, y]^2], {x, y} \[Element] RegionCapillary,
PlotRange -> All, PlotLabel -> "velocity magnitude",
PlotPoints -> 100, ColorFunction -> "TemperatureMap"]
{0.306492, Null}
The interpolating function returns 0 outside it's original region:
xVel[0.5, 0.5]
0.
Not sure if the Pe=10^2
is what is specified in COMSOL, if I use:
Pe = 100^2;
Thinks looks similar:
eqn = Pe {xVel[x, y], yVel[x, y]}.Grad[c[x, y], {x, y}] -
Laplacian[c[x, y], {x, y}];
mesh = ToElementMesh[RegionShell, MaxCellMeasure -> 0.001(*,
"MeshElementType"\[Rule]TriangleElement*)]
bcs = {DirichletCondition[c[x, y] == 0, x == 0 && 0.8 < y < 0.9],
DirichletCondition[c[x, y] == 1, x > 0]};
AbsoluteTiming[
csol = NDSolveValue[{eqn == 0, bcs}, c, {x, y} \[Element] mesh];]
{0.527804, Null}
DensityPlot[csol[x, y], {x, y} \[Element] RegionShell,
PlotRange -> All, PlotLabel -> "x velocity", PlotPoints -> 100,
ColorFunction -> "TemperatureMap"]
Comments
Post a Comment