Skip to main content

front end - Is there a way to control V10's undo length?


This may be a duplicate (if so I will remove this), but I was having trouble finding the relevant bit of documentation to fix it. I noticed that my FrontEnd memory use was growing out of control when I was repeatedly using Image on data, even if the image was being deleted shortly after being generated.


As a minimal example:


Image[RandomReal[{0, 1}, {2000, 2000, 3}]]

Every time this line is executed, FrontEnd RAM use (as measured by both MemoryInUse[$FrontEnd] and an external profiler) jumps by 120MB, even though the previous image is deleted every time the line is re-executed. I assume this means the images are being invisibly stored somewhere inside the frontend, but I have been having trouble finding out exactly where, and as a result I keep having to quit and restart the application because memory use keeps ballooning out of control.


I glanced through $FrontEnd // Options but didn't see anything obviously related. A similar problem regarding Rasterize was discussed here; I don't know if that is related or not. In any case, my question is:





  • Where are the images being invisibly stored?




  • How do I turn off this behavior?




Edit: Belisarius says this does not occur on his WinXP Mathematica 9. I am using Mac OSX 10.6 Mathematica 10. Can anyone else chime in with OS, version number, and whether you observed the effect? Alexey Popkov has suggested that this may be from data storage introduced by V10's multiple undo feature.



Answer





NOTE: I forgot about this. Apparently, the following should (presumably) be the way to change these settings, but the actual feature has not been implemented yet.





You can change this using UndoOptions. To go back to version 9 behavior, use this:


SetOptions[EvaluationNotebook[], UndoOptions -> {"MaxLength" -> 1, "RememberEvaluations" -> False}]

See the other options in the documentation for finer control.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...