My goal is to use ColorFunction to color a cylinder based on the $z$ value of a separate Plot3D . I'm not sure if I am making a mathematical error somewhere or if I am just messing up some snippet of the following code. a = Pi; b = 2; f[x_, y_] = y; u[x_, y_, t_] = -((8 E^(-((π^2 t)/20)) (2 - π) Cos[(π y)/4])/π^2) - (8 E^(-((π^2 t)/5)) (2 + 3 π) Cos[(3 π y)/4])/(9 π^2) - (8 E^(-((9 π^2 t)/20)) (2 - 5 π) Cos[(5 π y)/4])/(25 π^2); Table[ContourPlot[u[x, y, t], {x, -a, a}, {y, 0, b}, ColorFunction -> ColorData["TemperatureMap"], Contours -> 8], {t, {0, .1, .3, .5, 1, 2, 3, 4}}] Now, I want to wrap each contour plot onto a cylinder by gluing the $x=-a$ edge to the $x=a$ edge; the bottom of the cylinder is then at $y=0$ and the top at $y=b$. Table[ParametricPlot3D[{Cos[theta], Sin[theta], rho}, {theta, -Pi, Pi}, {rho, 0, 2}, AxesLabel -> {x, y, z}, ColorFunctionScaling -> False, ColorFunction -> Function[{x, y, z, theta, rho}, ColorDat