Skip to main content

What is the fastest way to locate an image inside a larger image?


let b =


enter image description here




let c =


enter image description here




How to do:


find[c,b]


that returns the bounding box of c in b?


Notes



  • Original b is not scaled, this is only the case in this post.

  • (Update: this may actually not be the case.) Because b contains an exact copy of c, this can be thought of as a problem of finding a submatrix in a larger matrix.


Links to original images



Update



Here are the results so far:


enter image description here


Final Result (using Heike's answer)


enter image description here



Answer



Using ImageCorrelate, you can do something like


bbox[img_, crop_] := {#, # + Reverse@ImageDimensions[crop] - 1} &@
Position[ImageData@
Binarize[
ImageCorrelate[img, crop, SquaredEuclideanDistance,

Padding -> None], .001], 0][[1]]

Example


img = ExampleData[{"TestImage", "Mandrill"}]
crop = ImageTake[img, {40, 80}, {141, 200}]

bbox[img, crop]


{{40, 141}, {80, 200}}


Edit


In response to the OP's question,here is an explanation of how bbox works.


ImageCorrelate in bbox creates a new image by calculating the Euclidean distance between crop and each of the sub images of img with the same dimensions as crop. The option Padding -> None is to make sure that the pixel at {i,j} in the result of ImageCorrelate corresponds to the sub image whose upper left corner is at position {i,j} in the original image.


The Euclidean distance between two images is zero only if they are the same, so to find the position of crop in img we just need to extract the position of the pixels with value {0.,0.,0.} from the image data of ImageCorrelate which is what Position[ImageData@Binarize[....]], 0] does.


This will give us the position of the upper left corner of crop. The lower right corner is then the upper-left corner plus the dimensions of crop (note that since ImageDimensions returns {number of cols, number of rows}, and the bounding box is given as {{rowMin, colMin}, {roxMaw, colMax}} we need to reverse ImageDimensions)


Edit 2


As Szabolcs pointed out, the cut off in Binarize is somewhat arbitrary, and might cause false positives. As an alternative you could do something like this instead, which would find the best fit in the image:


bbox[img_, crop_] := {#, # + Reverse@ImageDimensions[crop] - 1} &@
(Position[#, Min[#]][[1]] &@

ImageData[ColorConvert[
ImageCorrelate[img, crop, SquaredEuclideanDistance,
Padding -> None], "Graylevel"]])

Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...