Skip to main content

expression manipulation - Group symbols by a given partition of the occuring symbols


I have following expression


$$-3 b_{\sigma _d}-3 b_{\sigma _v}-b-b_2+2 j-2 j_2-2 j_3+2 j_6+12$$



Mathematica input


12-b+2 j-Subscript[b, 2]-3 Subscript[b, Subscript[\[Sigma], d]]-3 Subscript[b, Subscript[\[Sigma], v]]-2 Subscript[j, 2]-2 Subscript[j, 3]+2 Subscript[j, 6]

I want to reorder this expression by partitioning the occuring symbols. Additionally, common factors of the partitions should be factored out:


Partition (given by user): $$\{\{j,j_2,j_3,j_6\},\{b,b_2,b_{\sigma_d},b_{\sigma _v}\}\}$$


The order should also be respected. The end result would look like $$2(j-j_2-j_3+j_6)-(b+b_2+3 b_{\sigma _d}+3 b_{\sigma _v})+12$$


I have considered FactorTerms[poly,{x_1,x_2,...] and Collect[expr,{x_1,x_2,...}] but was not successful to achieve this.



Answer



expr = 12 - b + 2 j - Subscript[b, 2] - 
3 Subscript[b, Subscript[σ, d]] -

3 Subscript[b, Subscript[σ, v]] - 2 Subscript[j, 2] -
2 Subscript[j, 3] + 2 Subscript[j, 6]

Inactive[Plus] @@
(Total /@ Join @@
GatherBy[List @@ expr, MatchQ[_ (# | Subscript[#, _])] & /@ {j, b}])

TeXForm @ %



$\Large 12+\left(-3 b_{\sigma _d}-3 b_{\sigma _v}-b-b_2\right)+\left(2 j-2 j_2-2 j_3+2 j_6\right)$



Update:


ClearAll[f]
f[e_] := Row @ Flatten @ Append[Reverse @ Values @
GroupBy[Transpose[{Coefficient[e, #], #}& @ Variables[e]] /.
{a_, b_Symbol} :> {a, Subscript[b, 0]}, #[[2,1]]&,
Row[{# /. { 1 -> " + ", -1 -> " - "}, "(", HoldForm @ #2, ")"}]& @@
FactorList[ Dot @@ Transpose[#]][[All, 1]]&],
If[# < 0, {" - ", -#}, {" + ", #}]&[e /.

(Alternatives@@Variables[e] -> 0)] /. {_, 0} -> Nothing] /.
Subscript[a_, 0] -> a

Examples:


f @ expr 

enter image description here


System`Convert`CommonDump`templateBoxToDisplay = BoxForm`TemplateBoxToDisplayBoxes;

TeXForm @ f @ expr



$\Large 2(j-j_2-j_3+j_6)\text{ - }(b+b_2+3 b_{\sigma _d}+3 b_{\sigma _v})\text{ + }12$



f[- expr - 20] // TeXForm


$\Large -2(j-j_2-j_3+j_6)\text{ + }(b+b_2+3 b_{\sigma _d}+3 b_{\sigma _v})\text{ - }32$



Note: I used Carl's answer from this q/a to make TeXForm process Rows properly.



Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...