Skip to main content

equation solving - Parsing output of a reduce operation


This question is a broader question than this. The output of Reduce can be of different forms. The solutions proposed for that question works well when the output of Reduce is as provided in that question. The output of Reduce can also be of the forms:


$n_2\in \mathbb{Z}\land n_1=1\land 0\leq n_2\leq 1993.$


or


$\left(n_1|n_2\right)\in \mathbb{Z}\land \left(\left(n_1=0\land 1.\leq n_2\leq 19979.\right)\lor \left(1.\leq n_1\leq 2222.\land 0\leq n_2\leq \text{3.5534074004528205$\grave{ }$*${}^{\wedge}$-79} \sqrt{-4.55384\times 10^{157} n_1^2+1.50383\times 10^{162} n_1+7.9031\times 10^{164}}+\text{1.7152185859604652$\grave{ }$*${}^{\wedge}$-56} \left(3.20659\times 10^{56} n_1+5.82404\times 10^{59}\right)\right)\lor \left(2223.\leq n_1\leq 33540.\land \text{1.7152185859604652$\grave{ }$*${}^{\wedge}$-56} \left(3.20659\times 10^{56} n_1+5.82404\times 10^{59}\right)-\text{3.5534074004528205$\grave{ }$*${}^{\wedge}$-79} \sqrt{-4.55384\times 10^{157} n_1^2+1.50383\times 10^{162} n_1+7.9031\times 10^{164}}\leq n_2\leq \text{3.5534074004528205$\grave{ }$*${}^{\wedge}$-79} \sqrt{-4.55384\times 10^{157} n_1^2+1.50383\times 10^{162} n_1+7.9031\times 10^{164}}+\text{1.7152185859604652$\grave{ }$*${}^{\wedge}$-56} \left(3.20659\times 10^{56} n_1+5.82404\times 10^{59}\right)\right)\right)$


In such cases, how can I find the maximum value of $n_1$ and $n_2$ from the Reduce output?



Edit: Please find below the function and the reduce operations that produce the two kind of outputs:


driftParamSet = (-0.72 
\!\(\*SubsuperscriptBox[\(n\), \(1\), \(2\)]\) -
Subscript[n,
1] (0.35` (0.8` - 0.39 Subscript[n, 2]) +
0.8` (-2.35 - 0.1` Subscript[n, 2])) -
0.19 Subscript[n,
2] (0.39` - 0.1` Subscript[n, 2] +
0.1` (-3 + 2 Subscript[n, 2])))/(0.8` Subscript[n, 1] +
0.19 Subscript[n, 2])

Reduce[driftParamSet > -5 && Subscript[n, 1] >= 0 &&
Subscript[n, 2] >= 0 , {Subscript[n, 1], Subscript[n,
2]}, Integers]
Reduce[driftParamSet > -1000 && Subscript[n, 1] >= 0 &&
Subscript[n, 2] >= 0 , {Subscript[n, 1], Subscript[n, 2]}, Integers]

Answer



You can use Maximize on the first example:


r1 = Quiet @ Reduce[
driftParamSet > -5 && Subscript[n, 1] >= 0 && Subscript[n, 2] >= 0,
{Subscript[n, 1], Subscript[n, 2]},

Integers
];

Maximize[{Subscript[n, 2], r1}, {Subscript[n, 1], Subscript[n, 2]}]


{657., {Subscript[n, 1] -> 102., Subscript[n, 2] -> 657}}



For the second example, Maximize is unable to find a result, and then uses NMaximize:


r2 = Quiet @ Reduce[

driftParamSet > -1000 && Subscript[n, 1] >= 0 && Subscript[n, 2] >= 0,
{Subscript[n, 1], Subscript[n, 2]},
Integers
];

Maximize[{Subscript[n, 2], r2}, {Subscript[n, 1], Subscript[n, 2]}]


NMaximize::cvmit: Failed to converge to the requested accuracy or precision within 100 iterations.


{22712., {Subscript[n, 1] -> 1118, Subscript[n, 2] -> 22712}}




As the error message says, 100 iterations were not sufficient. So, switch to using NMaximize, and raise the iteration maximum:


NMaximize[
{Subscript[n, 2], r2},
{Subscript[n, 1], Subscript[n, 2]},
MaxIterations -> 2000
]


{114663., {Subscript[n, 1] -> 17793, Subscript[n, 2] -> 114663}}




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...