How can I get a ternary density plot just like the plots from OriginLab?
ContourPlot
and DensityPlot
seemingly can accept the [f, {x}, {y}]
-style,but cannot accept the [f, {x},{y}, {z}]
-style.
Answer
Here's my attempt at an implementation, using ReliefImage[]
to give the plots some depth perception:
triangleTicks[arg_List: {5, 4}, tl_: 0.01] := Module[{divs, dQ, sides, st},
dQ = VectorQ[#, IntegerQ] && Length[#] == 2 &;
sides = Partition[{{0, 0}, {1, 0}, {1, Sqrt[3]}/2}, 2, 1, 1];
divs = If[dQ[arg] || (MatrixQ[arg, NumericQ] && First[Dimensions[arg]] == 1),
{arg}, arg];
divs = If[dQ[#],
DeleteCases[MapAt[Function[f, Flatten[ArrayPad[#, -1] & /@ f]],
FindDivisions[{0, 1, 1/Rest[FoldList[Times, 1, #]]}, #],
2], {}], #] & /@
divs[[Mod[Range[3], Length[divs], 1]]];
st = MapThread[Table[Join[Transpose[{1 - d, d}].#1, List /@ d, 2], {d, #2}] &,
{sides, divs}];
MapIndexed[Block[{pt = N[Most[#1]], os},
os = Scaled[RotationTransform[2 π (#2[[1]] - 2)/3][
{tl/#2[[2]], 0}], pt];
If[#2[[2]] == 2, Line[{pt, os}],
{Text[ToString[If[IntegerQ[Last[#1]],
Identity, N][Last[#1]]], os,
{{1, 1}, {-1, -1}, {1, -1}}[[#2[[1]]]]],
Line[{pt, os}]}]] &, st, {3}]]
Options[TernaryReliefPlot] =
{AspectRatio -> Automatic, Background -> None, BaselinePosition -> Automatic,
BaseStyle -> {}, ClippingStyle -> {Black, White}, ColorFunction -> "ThermometerColors",
ColorFunctionScaling -> True, ColorOutput -> Automatic, ContentSelectable -> Automatic,
CoordinatesToolOptions -> Automatic, DisplayFunction :> $DisplayFunction, Epilog -> {},
FormatType :> TraditionalForm, FrameLabel -> None, FrameTicks -> Automatic,
ImageMargins -> 0., ImagePadding -> All, ImageSize -> Automatic,
ImageSizeRaw -> Automatic, LabelStyle -> {}, Method -> Automatic, PlotLabel -> None,
PlotPoints -> Automatic, PlotRange -> All, PlotRegion -> Automatic,
PreserveImageOptions -> Automatic, Prolog -> {}, RotateLabel -> True};
TernaryReliefPlot[f_, opts : OptionsPattern[]] :=
Module[{fl, flt, ft, img, n, rl, sides},
sides = {{0, 0}, {1, 0}, {1, Sqrt[3]}/2};
fl = OptionValue[FrameLabel];
If[fl =!= None,
If[fl === Automatic, fl = ToString /@ Range[3]];
If[Head[fl] =!= List, fl = PadRight[{fl}, 3, ""]];
flt = {fl, ListCorrelate[{{1}, {1}}/2, sides, 1]} ~Join~
If[MatchQ[OptionValue[RotateLabel], True | Automatic],
{{{0, 2.5}, {0, -2.5}, {0, -2.5}},
{{1, 0}, {1, -Sqrt[3]}/2, {1, Sqrt[3]}/2}},
{{{0, 2.5}, {-2.5, 0}, {2.5, 0}}}]];
ft = OptionValue[FrameTicks]; If[ft === Automatic, ft = {5, 4}];
n = OptionValue[PlotPoints]; If[n === Automatic, n = 300];
img = ReliefImage[SparseArray[{j_, k_} /; j >= k :>
f @@ ({j - k, k - 1, n - j}/(n - 1)), {n, n}],
FilterRules[Join[{opts}, Options[TernaryReliefPlot]],
Options[ReliefImage]]];
Graphics[{If[ft =!= None, triangleTicks[ft], {}],
Texture[img], Polygon[sides, VertexTextureCoordinates ->
{{0, 0}, {1, 0}, {0, 1}}],
If[fl =!= None, MapThread[Text, flt], {}]},
Axes -> False, AxesLabel -> None, Frame -> False,
FrameLabel -> None, Method -> Automatic, PlotRange -> All,
FilterRules[Join[{opts}, Options[TernaryReliefPlot]],
Options[Graphics]]]]
Try it out:
TernaryReliefPlot[#3 Sin[10 #1]^2 + #3 (1 - #3) Cos[20 #2]^2 &,
ColorFunction -> (Hue[0.85 #] &),
FrameLabel -> {Style["p", Large], Style["q", Large], Style["r", Large]},
FrameTicks -> {4, 2}]
It's still missing a few things (e.g. grid lines), but it's a start. I'll try to improve on this when I get the chance.
Comments
Post a Comment