Skip to main content

plotting - Make a density list plot/histogram from large, pre-binned data set?


I have a large data set consisting of O(109) two-dimensional points. In order to save memory and time I have pre-binned these into a uniform grid of 500×500 bins using Fortran. When imported into Mathematica 8.0 as a table the resulting data look like:



data = {{0.388348, 0.388349, 9},{0.388348, 0.776699, 23},...},



where the first two items of each entry correspond to the x-y-coordinates of the upper-right-hand corner of the bin and the third is the count.


Edit:





  • For a sample of the raw data, raw=RandomReal[1,{1000000000,2}] is a good approximation. This is obviously unworkable.




  • For the binned data: binned=Table[{.01*Ceiling[raw[[i,1]]/.01],.01*Ceiling[raw[[i,2]]/.01],RandomInteger[1000]},{i,1,250000}].




I would like to plot this pre-binned data set in the form of a DensityHistogram, but my data format doesn't fit into what this function is expecting. I have reviewed a similar question for one-dimensional histograms at Histograms with pre-counted data, however I'm at a loss as to how to apply this to 2-D. I have also looked at doing




Image[Rescale[data]]



on the raw data. However, this crashes immediately with a SIGSEGV error that has the Wolfram Support team puzzled. Consequently, I haven't gone very far down this road.


Edit:



  • I have also tried ListDensityPlot[data,InterpolationOrder->0]. For the full data set, Mathematica hangs for over 10 minutes, at which point it runs out of memory and the kernel shuts down. For a subset of the data, I get something more reasonable, but I would need some way to scale this up to 5002 data points.


Making these plots seem to be something that is fairly easily done in Matplotlib, but I have already made some other plots in Mathematica and don't want to mess with different styles. I'm fairly new to Mathematica and don't have a good knowledge of all the functionality, unfortunately.


So, how can I make a DensityHistogram when the bins and counts have already been calculated?




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...