Skip to main content

plotting - Color vectors according to a user-defined function


V[x_,z_]:=x/Sqrt[x^2+z^2];
Ex[x_,z_]=-D[V[x,z],x];
Ez[x_,z_]=-D[V[x,z],z];

The electric field components (Ex,Ez) are to be plotted as a vector field in the x-z plane. In addition, I would like to color the vectors according to |E|^2. The default option:


  VectorColorFunction -> "ThermometerColors"


does not suit here because it plots magnitude of the vectors, but my vectors only contain the real part of the field. Below is my attempt:


vectorplot = 
VectorPlot[{Re[Ex[x, z]], Re[Ez[x, z]]}, {x, -2*R, 2*R}, {z, -2*R,
2*R},
VectorColorFunction -> Function[{x, z, vx, vz, n}, ColorData["ThermometerColors"]
[Abs[Ex[x,z]]^2+Abs[Ez[x,z]]^2]],

VectorScale -> {0.03, Automatic, None},
VectorColorFunctionScaling -> True, VectorPoints -> 25,
PlotLegends -> BarLegend[Automatic,

LegendLabel -> HoldForm[Superscript["|E|", 2]],
LabelStyle -> {FontFamily -> "Helvetica", FontSize -> 18, Black}], AspectRatio -> 1];

Would be grateful for your suggestions.



Answer



So there was nothing wrong with your user-defined color function, the only problem is that you paired it with VectorColorFunctionScaling->True. This means that the x and z values fed to the color function were scaled to lie between 0 and 1. What you really want to do is to scale the field intensity, not the coordinates.


Since your field intensity has a singularity at the origin, you need to choose some maximum intensity value for the color scale, otherwise the arrow at the origin will be red and every other arrow will be blue. Here I choose a maximum intensity of 2,


V[x_, z_] := x/Sqrt[x^2 + z^2];
Ex[x_, z_] = -D[V[x, z], x];
Ez[x_, z_] = -D[V[x, z], z];

R = 1;

With[{vectorscale = {0, 2}},
Legended[
VectorPlot[Re@{Ex[x, z], Ez[x, z]}, {x, -2*R, 2*R}, {z, -2*R, 2*R},
VectorColorFunction ->
Function[{x, z, vx, vz, n},
ColorData[{"ThermometerColors", vectorscale}][
Abs[Ex[x, z]]^2 + Abs[Ez[x, z]]^2]],
VectorScale -> {0.03, Automatic, None},

VectorColorFunctionScaling -> False,
VectorPoints -> 25,
AspectRatio -> 1],
BarLegend[{ColorData[{"ThermometerColors", vectorscale}],
vectorscale}, LegendLabel -> HoldForm[Superscript["|E|", 2]],
LabelStyle -> {FontFamily -> "Helvetica", FontSize -> 18, Black}]
]
]

enter image description here



Also I moved your BarLegend outside because it seems that VectorPlot will not take a PlotLegends option. I would like to point out that you could write that a bit simpler since your field is real-valued, and therefore the intensity that you are coloring according to is simply the norm squared, and so you could replace Abs[Ex[x, z]]^2 + Abs[Ez[x, z]]^2 with n^2, but I left it like this to be most general, i.e. you could color the arrows according to any scalar field


Finally, you could also display this field using VectorDensityPlot


With[{vectorscale = {0, 5}},
VectorDensityPlot[{{Re[Ex[x, z]], Re[Ez[x, z]]},
Abs[Ex[x, z]]^2 + Abs[Ez[x, z]]^2}, {x, -2*R, 2*R}, {z, -2*R,
2*R},
VectorScale -> {0.03, Automatic, None},
VectorPoints -> 25,
VectorStyle -> White,
ColorFunction ->(*"ThermometerColors"*)

Function[{x, z, vx, vz, n},
ColorData["ThermometerColors"][Rescale[n^2, vectorscale]]],
ColorFunctionScaling -> False,
PlotLegends ->
BarLegend[{ColorData[{"ThermometerColors", vectorscale}],
vectorscale},
LegendLabel -> HoldForm[Superscript["|E|", 2]],
LabelStyle -> {FontFamily -> "Helvetica", FontSize -> 18, Black}]
]
]


enter image description here


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...