When I use Limit
to evaluate the limit
$$\begin{align}\lim_{k \to 0} \frac{ (k+2)(\alpha^2 - \sqrt{\alpha^4 + k}) + k}{\alpha^2 - \sqrt{\alpha^4 + k} + 2 k}\end{align}$$
((k + 2) (α^2 - Sqrt[α^4 + k]) + k)/(α^2 - Sqrt[α^4 + k] + 2 k)
(α
and k
are assumed to be real)
Limit
gives the answer: 2
.
However, I believe the correct answer is
(2 (-1 + α^2))/(-1 + 4 α^2)
So, when should I trust the answer of Limit
?
Comments
Post a Comment