Skip to main content

kernel - All value types for a symbol?


Robby Villegas here shows a nice way to see all the types associated with a symbol. He sets a symbol, valueTypes, to an explicit list of the values types in version 3.0 of Mathematica (I took off his dollar sign (he wrote $ValueTypes) so as not to give the false impression that valueTypes is provided by the system --- Robby just writes it out from some other source, maybe just deep knowledge or the source code):


valueTypes = {Attributes, DefaultValues, DownValues, FormatValues, 
Messages, NValues, OwnValues, Options, SubValues, UpValues};
Through[valueTypes[Unevaluated[E]]]



{{Constant, Protected, ReadProtected}, {}, {}, {HoldPattern[MakeBoxes[E, _]] :> 
"\[ExponentialE]"}, {HoldPattern[E::usage] :> "E is the exponential constant
\[ExponentialE] (base of natural logarithms), with numerical value
\[TildeEqual] 2.71828."}, {}, {}, {}, {}, {}}

This was way back in version 3. We're at version 10.2, now, and I wonder whether any new "value types" have been added to the system.


Is there an authoritative list of these types, either in the documentation or in a system-supplied symbol I can inspect?




The question "Copying one symbol into another" is about a similar, but non-identical problem. Why is my question not a duplicate? The solution to copying involves the function Language`ExtendedDefintion, which explicitly lists the following value types:


In[1]:= Language`ExtendedDefinition[f]


Out[1]= Language`DefinitionList[HoldForm[f] ->
{OwnValues -> {}, SubValues -> {}, UpValues -> {},
DownValues -> {}, NValues -> {}, FormatValues -> {},
DefaultValues -> {}, Messages -> {}, Attributes -> {}}]

Note that it does not list Options. Options are instead stored within DefaultValues for some reason:


In[2]:= Options[f] = {a -> 1};
In[3]:= Language`ExtendedDefinition[f]


Out[3]= Language`DefinitionList[HoldForm[f] ->
{OwnValues -> {}, SubValues -> {},
UpValues -> {}, DownValues -> {}, NValues -> {},
FormatValues -> {}, DefaultValues -> {HoldPattern[Options[f]] -> {a -> 1}},
Messages -> {}, Attributes -> {}}]

This shows that Options and Default are somehow different from the other value types, and they are both stored inside DefaultValues. Yet they still fit the description of "values associated with a symbol" (and are listed by Definition). I would like to have a full list of such value types, including Options and Default.




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...