Skip to main content

plotting - Why do I have to put Evaluate[] here


I wanted to draw some contours. I succeeded with this:


W1 = {p, -2, 2, 0.5};
W2 = {p, -10, 10, 1};
P = W1; ContourPlot[
Evaluate[Union[Table[y^2 == 2 p*x, Evaluate[P]],

Table[x^2 == 2 p*y, Evaluate[P]]]], {x, -5, 5}, {y, -5, 5}]
P = W2;
ContourPlot[Evaluate[
Union[Table[y^2 == 2 p*x, Evaluate[ P]],
Table[x^2 == 2 p*y, Evaluate[P]]]], {x, -5, 5}, {y, -5, 5}]

I don't like this solution. I used Evaluate[] a few times and I feel like it is unnecessary although without the function I get errors. Could anyone explain me that. I find the reference unhelpful (maybe that's my lack of language?) "causes expr to be evaluated even if it appears as the argument of a function whose attributes specify that it should be held unevaluated.".



Answer



ContourPlot has the attribute HoldAll. That means that it receives its arguments before they are evaluated. So, if you put as a first argument, something that evaluates to a list but it's not a list, it won't fit with the overloaded version of ContourPlot that expects a list. The same happens with the second argument of Table. Whether they end up not evaluating, using another overload, giving a warning, or simply taking more time than they should, that depends on the particular case at hand


Evaluate is something that makes the containing function behave temporarily as non-holding. Try



SetAttributes[f, HoldAll];
f[x_]:=Hold[x];
f[2+2]
f[Evaluate[2+2]]

If you don't find this neat, what's usually done is use With


With[{P = P},
With[{lists = Union[Table[y^2 == 2 p*x, P], Table[x^2 == 2 p*y, P]]},
ContourPlot[lists, {x, -5, 5}, {y, -5, 5}]
]

]

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...