Skip to main content

equation solving - NDSolve solution violates initial conditions


I have the following code:


solution = NDSolve[{5269.333333333333` Cos[a[t]] + 1.` Cos[a[t]] l[t] + 
83.33333333333333` Cos[a[t] - c[t]] Derivative[1][c][t]^2 +
172.66666666666666` Derivative[2][a][t] +
8.` Cos[a[t] + b[t]] Derivative[2][b][t] ==
8.` Sin[a[t] + b[t]] Derivative[1][b][t]^2 +
83.33333333333333` Sin[a[t] - c[t]] Derivative[2][c][t],
Cos[b[t]] l[t] + 6 Cos[a[t] + b[t]] Derivative[2][a][t] +
8 Derivative[2][b][t] ==

64 Cos[b[t]] + 6 Sin[a[t] + b[t]] Derivative[1][a][t]^2,
1.` Sin[c[t]] + 0.015625` Derivative[2][c][t] ==
0.03125` Cos[a[t] - c[t]] Derivative[1][a][t]^2 +
0.03125` Sin[a[t] - c[t]] Derivative[2][a][t],
6 Sin[a[t]] + 8 Sin[b[t]] == 3 Sqrt[2],
4 a[0] == \[Pi], b[0] == 0, c[0] == 0,
Derivative[1][a][0] == 0,
Derivative[1][b][0] == 0,
Derivative[1][c][0] == 0},
{a[t], b[t], c[t], l[t]},

{t, 0., 0.25}, Method -> {"IndexReduction" -> Automatic}];

asol[t_] = a[t] /. Flatten[solution];
Print["a[0]=", asol[0] , "= and a'[t]=", Derivative[1][asol][0]]

Note that I have a'[t] = Derivative[1][a][0] == 0 among the initial conditions. Yet, the output of this cell is


a[0]=0.785398= and a'[t]=6.06109

a'[t] != 0! I tried restarting Mathematica and pasting this into a new notebook, same thing. When I plot a[t], it indeed trends up instead of starting with a slope of 0. I suspect the odds of me discovering a bug in NDSolve the first time I use it are about 0 (or 0.`5) so I suspect I am not using it right.


What am I doing wrong here? Why is Mathematica giving me a solution that is NOT a solution? Any pointer appreciated.




Answer



Use the method option


Method -> {"IndexReduction" -> {Automatic, "ConstraintMethod" -> "Projection"}}

This forces the equations to be incorporated as constraints. See tutorial/NDSolveDAE#128085219. Depending on the version, you might need to us Rationalize to make the coefficients exact to avoid 1/0 errors. (In general, I avoid machine precision coefficients when doing algebra, especially in a case like this where there's numerical inconsistency. Full code below.)


With this setting I get the following:


Print["a[0]=", asol[0], "= and a'[t]=", Derivative[1][asol][0]]


a[0]=0.785398= and a'[t]=-2.77556*10^-17




Update: Code dump


solution = 
NDSolve[Rationalize@{5269.333333333333` Cos[a[t]] +
1.` Cos[a[t]] l[t] +
83.33333333333333` Cos[a[t] - c[t]] Derivative[1][c][t]^2 +
172.66666666666666` Derivative[2][a][t] +
8.` Cos[a[t] + b[t]] Derivative[2][b][t] ==
8.` Sin[a[t] + b[t]] Derivative[1][b][t]^2 +

83.33333333333333` Sin[a[t] - c[t]] Derivative[2][c][t],
Cos[b[t]] l[t] + 6 Cos[a[t] + b[t]] Derivative[2][a][t] +
8 Derivative[2][b][t] ==
64 Cos[b[t]] + 6 Sin[a[t] + b[t]] Derivative[1][a][t]^2,
1.` Sin[c[t]] + 0.015625` Derivative[2][c][t] ==
0.03125` Cos[a[t] - c[t]] Derivative[1][a][t]^2 +
0.03125` Sin[a[t] - c[t]] Derivative[2][a][t],
6 Sin[a[t]] + 8 Sin[b[t]] == 3 Sqrt[2], 4 a[0] == \[Pi],
b[0] == 0, c[0] == 0, Derivative[1][a][0] == 0,
Derivative[1][b][0] == 0, Derivative[1][c][0] == 0}, {a[t], b[t],

c[t], l[t]}, {t, 0., 0.25},
Method -> {"IndexReduction" -> {Automatic,
"ConstraintMethod" -> "Projection"}}];

asol[t_] = a[t] /. Flatten[solution];
Print["a[0]=", asol[0], "= and a'[t]=", Derivative[1][asol][0]]

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...