Skip to main content

equation solving - NDSolve solution violates initial conditions


I have the following code:


solution = NDSolve[{5269.333333333333` Cos[a[t]] + 1.` Cos[a[t]] l[t] + 
83.33333333333333` Cos[a[t] - c[t]] Derivative[1][c][t]^2 +
172.66666666666666` Derivative[2][a][t] +
8.` Cos[a[t] + b[t]] Derivative[2][b][t] ==
8.` Sin[a[t] + b[t]] Derivative[1][b][t]^2 +
83.33333333333333` Sin[a[t] - c[t]] Derivative[2][c][t],
Cos[b[t]] l[t] + 6 Cos[a[t] + b[t]] Derivative[2][a][t] +
8 Derivative[2][b][t] ==

64 Cos[b[t]] + 6 Sin[a[t] + b[t]] Derivative[1][a][t]^2,
1.` Sin[c[t]] + 0.015625` Derivative[2][c][t] ==
0.03125` Cos[a[t] - c[t]] Derivative[1][a][t]^2 +
0.03125` Sin[a[t] - c[t]] Derivative[2][a][t],
6 Sin[a[t]] + 8 Sin[b[t]] == 3 Sqrt[2],
4 a[0] == \[Pi], b[0] == 0, c[0] == 0,
Derivative[1][a][0] == 0,
Derivative[1][b][0] == 0,
Derivative[1][c][0] == 0},
{a[t], b[t], c[t], l[t]},

{t, 0., 0.25}, Method -> {"IndexReduction" -> Automatic}];

asol[t_] = a[t] /. Flatten[solution];
Print["a[0]=", asol[0] , "= and a'[t]=", Derivative[1][asol][0]]

Note that I have a'[t] = Derivative[1][a][0] == 0 among the initial conditions. Yet, the output of this cell is


a[0]=0.785398= and a'[t]=6.06109

a'[t] != 0! I tried restarting Mathematica and pasting this into a new notebook, same thing. When I plot a[t], it indeed trends up instead of starting with a slope of 0. I suspect the odds of me discovering a bug in NDSolve the first time I use it are about 0 (or 0.`5) so I suspect I am not using it right.


What am I doing wrong here? Why is Mathematica giving me a solution that is NOT a solution? Any pointer appreciated.




Answer



Use the method option


Method -> {"IndexReduction" -> {Automatic, "ConstraintMethod" -> "Projection"}}

This forces the equations to be incorporated as constraints. See tutorial/NDSolveDAE#128085219. Depending on the version, you might need to us Rationalize to make the coefficients exact to avoid 1/0 errors. (In general, I avoid machine precision coefficients when doing algebra, especially in a case like this where there's numerical inconsistency. Full code below.)


With this setting I get the following:


Print["a[0]=", asol[0], "= and a'[t]=", Derivative[1][asol][0]]


a[0]=0.785398= and a'[t]=-2.77556*10^-17




Update: Code dump


solution = 
NDSolve[Rationalize@{5269.333333333333` Cos[a[t]] +
1.` Cos[a[t]] l[t] +
83.33333333333333` Cos[a[t] - c[t]] Derivative[1][c][t]^2 +
172.66666666666666` Derivative[2][a][t] +
8.` Cos[a[t] + b[t]] Derivative[2][b][t] ==
8.` Sin[a[t] + b[t]] Derivative[1][b][t]^2 +

83.33333333333333` Sin[a[t] - c[t]] Derivative[2][c][t],
Cos[b[t]] l[t] + 6 Cos[a[t] + b[t]] Derivative[2][a][t] +
8 Derivative[2][b][t] ==
64 Cos[b[t]] + 6 Sin[a[t] + b[t]] Derivative[1][a][t]^2,
1.` Sin[c[t]] + 0.015625` Derivative[2][c][t] ==
0.03125` Cos[a[t] - c[t]] Derivative[1][a][t]^2 +
0.03125` Sin[a[t] - c[t]] Derivative[2][a][t],
6 Sin[a[t]] + 8 Sin[b[t]] == 3 Sqrt[2], 4 a[0] == \[Pi],
b[0] == 0, c[0] == 0, Derivative[1][a][0] == 0,
Derivative[1][b][0] == 0, Derivative[1][c][0] == 0}, {a[t], b[t],

c[t], l[t]}, {t, 0., 0.25},
Method -> {"IndexReduction" -> {Automatic,
"ConstraintMethod" -> "Projection"}}];

asol[t_] = a[t] /. Flatten[solution];
Print["a[0]=", asol[0], "= and a'[t]=", Derivative[1][asol][0]]

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...