Skip to main content

Using Java log4j in Mathematica


Someone has a code example of how log4j can be used to create logs in Mathematica?


RLink uses it, as can be checked in initLogger[] function, in this file:


SystemOpen@FileNameJoin@{DirectoryName@DirectoryName@FindFile["RLink`"], "RLink.m"}


But it's not a stand alone code. If someone has a simpler one, I would appreciate.



Answer



Minimal code


Here is a minimal code (partly adopted from RLink), to get you started. First, load JLink:


Needs["JLink`"]
InstallJava[]

Here is the code:


ClearAll[logIt];

logIt[logger_,msg_String,mode_String]:=
Block[{trace, debug, info, warn, error, fatal},
With[{
method = mode /. {
"TRACE" -> trace,
"DEBUG" -> debug,
"INFO" -> info,
"WARN" -> warn,
"FATAL" -> fatal,
_ :> Return[$Failed, Block]

}},
JavaBlock@logger@method[JavaNew["java.lang.String", msg]]
]
];

logIt[logger_,msg_String]:=logIt[logger, msg, "INFO"];

And the initLogger function:


ClearAll[initLogger];
initLogger[logger_, logFile_]:=

Module[{},
logger@removeAllAppenders[];
logger@addAppender[
JavaNew["org.apache.log4j.ConsoleAppender"]
];
logger@addAppender[
JavaNew[
"org.apache.log4j.FileAppender",
JavaNew["org.apache.log4j.SimpleLayout"],
logFile

]
];
logIt[logger, "Logger initialized"];
];

Example of use


Here is an example (I assume that log4j is already on the classpath, which is usually so, because it is used also internally in Mathematica):


LoadJavaClass["org.apache.log4j.Logger"]

Now create a logger instance:



logger = Logger`getLogger["MyApp"]

(* « JavaObject[org.apache.log4j.Logger]» *)

and the log file:


$logFile = FileNameJoin[{$TemporaryDirectory, "mylog.txt"}];

Now, initialize the logger:


initLogger[logger, $logFile]


You can test:


Import[$logFile, "String"]

(* "INFO - Logger initialized" *)

Now log something:


Do[
If[i < 5,
logIt[logger, "i = " <> ToString [i]],
logIt[logger, "fatal error", "FATAL"]; Break[]

],
{i, 1, 10}
]

check:


Import[$logFile, "String"]

"INFO - Logger initialized
INFO - i = 1
INFO - i = 2

INFO - i = 3
INFO - i = 4
FATAL - fatal error"

You can do more interesting things with loggers with log4j, but this example should get you started.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...