Skip to main content

control systems - Strange output of a simple statespace model



The output of statespace model seems strange.


In the follwing code, the odes are governing equations of a three floors structure, and the output are three accelerations of floors.


If I understand statespace correctly, the output is simply obtained by using C matrix and D matrix as shown in the following code.


However, the result given by statespace model is wrong.


Am I using StateSpaceModel in a wrong way?


I am not sure if I state my problem clearly, sorry for my poor English.


Thanks.


 Remove["Global`*"] // Quiet;
\[DoubleStruckCapitalM] = {{m1, 0, 0}, {0, m2, 0}, {0, 0, m3}};
\[DoubleStruckCapitalK] = {{k11, k12, k13}, {k21, k22, k23}, {k31, k32, k33}};

\[DoubleStruckCapitalC] = {{c11, c12, c13}, {c21, c22, c23}, {c31, c32, c33}};
\[DoubleStruckCapitalB]\[DoubleStruckS] = {{1, -1, 0}, {0, 1, -1}, {0, 0, 1}};
\[DoubleStruckX] = {{x1[t]}, {x2[t]}, {x3[t]}};
uvec = {{u1[t]}, {u2[t]}, {u3[t]}};
\[CapitalLambda] = {{1}, {1}, {1}};
lhs = \[DoubleStruckCapitalM].D[\[DoubleStruckX], {t,2}] + \[DoubleStruckCapitalC].D[\[DoubleStruckX],t] + \[DoubleStruckCapitalK].\[DoubleStruckX] // Flatten;
rhs = \[DoubleStruckCapitalB]\[DoubleStruckS].uvec - \[DoubleStruckCapitalM].\[CapitalLambda] ddxg[t] // Flatten;
eq = lhs == rhs // Thread;

\[DoubleStruckZ] = {x1[t], x2[t], x3[t], x1'[t], x2'[t], x3'[t]};

\[DoubleStruckY] = {x1''[t], x2''[t], x3''[t]};
\[DoubleStruckU] = {u1[t], u2[t], u3[t], ddxg[t]};
ss = StateSpaceModel[eq, \[DoubleStruckZ], \[DoubleStruckU], \[DoubleStruckY], t];
{AA, BB, CC, DD} = Normal[ss];
ddxSS = CC.\[DoubleStruckZ] + DD.\[DoubleStruckU] // Flatten;
ddxEQ = {x1''[t], x2''[t], x3''[t]} /. Solve[eq, {x1''[t], x2''[t], x3''[t]}] // Flatten;
ddxSS - ddxEQ // Simplify(*this should be {0,0,0}*)

code picture



Answer




You can verify that the result from StateSpaceModel is correct by manually computing the transfer function and comparing it to the transfer function of the result.


With[{vars = LaplaceTransform[#[t], t, s] & /@ {x1, x2, x3}},
s^2 D[vars /. Solve[LaplaceTransform[eq, t, s], vars][[1]],
{LaplaceTransform[#[t], t, s] & /@ {u1, u2, u3, ddxg}}]] - TransferFunctionModel[ss][s]//
AllTrue[#, PossibleZeroQ, 2] &


True



The mistake in your verification is that you are assuming that the states of ss are also z. You have a descriptor system that has been converted to a standard state-space form and the original states are lost.



To preserve the original structure set the option DescriptorStateSpace to True. Now you can see that eq appears in the last state equations and the states of the descriptor state-space representation are {x1(t),x1′(t),x1″(t),x2(t),x2′(t),x2″(t),x3(t),x3′(t),x3″(t)}.


StateSpaceModel[eq, \[DoubleStruckZ], \[DoubleStruckU], \[DoubleStruckY], t, DescriptorStateSpace -> True]


>



eq // TableForm


enter image description here




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...