Skip to main content

control systems - Strange output of a simple statespace model



The output of statespace model seems strange.


In the follwing code, the odes are governing equations of a three floors structure, and the output are three accelerations of floors.


If I understand statespace correctly, the output is simply obtained by using C matrix and D matrix as shown in the following code.


However, the result given by statespace model is wrong.


Am I using StateSpaceModel in a wrong way?


I am not sure if I state my problem clearly, sorry for my poor English.


Thanks.


 Remove["Global`*"] // Quiet;
\[DoubleStruckCapitalM] = {{m1, 0, 0}, {0, m2, 0}, {0, 0, m3}};
\[DoubleStruckCapitalK] = {{k11, k12, k13}, {k21, k22, k23}, {k31, k32, k33}};

\[DoubleStruckCapitalC] = {{c11, c12, c13}, {c21, c22, c23}, {c31, c32, c33}};
\[DoubleStruckCapitalB]\[DoubleStruckS] = {{1, -1, 0}, {0, 1, -1}, {0, 0, 1}};
\[DoubleStruckX] = {{x1[t]}, {x2[t]}, {x3[t]}};
uvec = {{u1[t]}, {u2[t]}, {u3[t]}};
\[CapitalLambda] = {{1}, {1}, {1}};
lhs = \[DoubleStruckCapitalM].D[\[DoubleStruckX], {t,2}] + \[DoubleStruckCapitalC].D[\[DoubleStruckX],t] + \[DoubleStruckCapitalK].\[DoubleStruckX] // Flatten;
rhs = \[DoubleStruckCapitalB]\[DoubleStruckS].uvec - \[DoubleStruckCapitalM].\[CapitalLambda] ddxg[t] // Flatten;
eq = lhs == rhs // Thread;

\[DoubleStruckZ] = {x1[t], x2[t], x3[t], x1'[t], x2'[t], x3'[t]};

\[DoubleStruckY] = {x1''[t], x2''[t], x3''[t]};
\[DoubleStruckU] = {u1[t], u2[t], u3[t], ddxg[t]};
ss = StateSpaceModel[eq, \[DoubleStruckZ], \[DoubleStruckU], \[DoubleStruckY], t];
{AA, BB, CC, DD} = Normal[ss];
ddxSS = CC.\[DoubleStruckZ] + DD.\[DoubleStruckU] // Flatten;
ddxEQ = {x1''[t], x2''[t], x3''[t]} /. Solve[eq, {x1''[t], x2''[t], x3''[t]}] // Flatten;
ddxSS - ddxEQ // Simplify(*this should be {0,0,0}*)

code picture



Answer




You can verify that the result from StateSpaceModel is correct by manually computing the transfer function and comparing it to the transfer function of the result.


With[{vars = LaplaceTransform[#[t], t, s] & /@ {x1, x2, x3}},
s^2 D[vars /. Solve[LaplaceTransform[eq, t, s], vars][[1]],
{LaplaceTransform[#[t], t, s] & /@ {u1, u2, u3, ddxg}}]] - TransferFunctionModel[ss][s]//
AllTrue[#, PossibleZeroQ, 2] &


True



The mistake in your verification is that you are assuming that the states of ss are also $\mathbf{z}$. You have a descriptor system that has been converted to a standard state-space form and the original states are lost.



To preserve the original structure set the option DescriptorStateSpace to True. Now you can see that eq appears in the last state equations and the states of the descriptor state-space representation are $\left\{\text{x1}(t),\text{x1}'(t),\text{x1}''(t),\text{x2}(t),\text{x2}'(t),\text{x2}''(t ),\text{x3}(t),\text{x3}'(t),\text{x3}''(t)\right\}$.


StateSpaceModel[eq, \[DoubleStruckZ], \[DoubleStruckU], \[DoubleStruckY], t, DescriptorStateSpace -> True]


>



eq // TableForm


enter image description here




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...