Skip to main content

interpolation - Derivative of an interpolating function


I have an interpolating function (which comes from an integral that cannot be done analytically), it looks nice and smooth:


Interpolating function


However, since what I need is the derivative of this function, it is not anywhere as nice, and creates even more problems because I need to take another derivative:


Derivative


What can I do to fix this? Would a finer interpolation (more points) help me get a nice and smooth derivative?



Edit: here is the Data:


Data = {{0.`, 1.18511029511640469114089648588854087848`10.150144072619367},\
{0.01`, 1.18510915141381873002119008755202436205`10.150144024011082},\
{0.02`, 1.18511435322061847648035213921042079454`10.150144027484796},\
{0.03`, 1.18512377751629629507764258035607956368`10.150144035635863},\
{0.04`, 1.18513666870279756691532838023480490597`10.150144048776115},\
{0.05`, 1.18515303061422706474431645637098283555`10.15014406941381}, \
{0.06`, 1.18517300268139844170574323798849613703`10.15014408597322}, \
{0.07`, 1.18519721290194811745081245608303402428`10.15014411701473}, \
{0.08`, 1.18522485472785507872365597353119590618`10.150144142371994}, \

{0.09`, 1.18525743490838326182977544002795767313`10.15014430398495}, \
{0.1`, 1.18529181766590917587753106023097436953`10.150144226523972}, \
{0.11`, 1.18533012947258504331933163872033991666`10.150144342414073}, \
{0.12`, 1.18537535794608604700884789894116449025`10.150144338074611}, \
{0.13`, 1.18542338074257295343916437155608763078`10.150144406576674}, \
{0.14`, 1.18547568412383152850245669767675027582`10.1501444863911}, \
{0.15`, 1.18553237351725081294481546747873793701`10.150144580282893}, \
{0.16`, 1.18559356539730406745084666440927750185`10.15014468715796}, \
{0.17`, 1.1856594012195868842552371471709977855`10.15014481012605}, \
{0.18`, 1.18572994038821948284881590124118949524`10.150144954371694}, \

{0.19`, 1.18580576780416629126805282646633543557`10.150145120316939}, \
{0.2`, 1.18588662577854365787002539267644795435`10.150145310363882}, \
{0.21`, 1.18597281981851727255214491662348668078`10.150145529439477}, \
{0.22`, 1.18606478430049428941622590752531454056`10.150145787261783}, \
{0.23`, 1.18616272903687216790374198568728068545`10.15014605666511}, \
{0.24`, 1.18626510591361532033795693262460169863`10.150146390203444}, \
{0.25`, 1.18637426127504944567071982603480374245`10.150146774782275}, \
{0.26`, 1.18649015917333855242847523359354369083`10.15014719264224}, \
{0.27`, 1.18661101009295616799357710471452111852`10.15014768322046}, \
{0.28`, 1.18673900496143889294451522217241049475`10.150148240253495}, \

{0.29`, 1.18687355655859301315840557679708792364`10.150148873197818}, \
{0.3`, 1.18701480740624226945146263797461631479`10.150149590762364}, \
{0.31`, 1.18716231065857422108655222056482240714`10.150150407266645}, \
{0.32`, 1.18731642602462964885928584146643650726`10.150151330569418}, \
{0.33`, 1.18747806145077205433009638384396858023`10.150152366235345}, \
{0.34`, 1.18764411696922843210309919066147261396`10.150153545008111}, \
{0.35000000000000003`,
1.18781649475649943627405020262862524279`10.150154860917306}, \
{0.36`, 1.18799468651411256374486052068118271875`10.150156334657858}, \
{0.37`, 1.18817575368943000448487530846574217954`10.150157948922276}, \

{0.38`, 1.18836422541721175344820207240745802011`10.150159802518056}, \
{0.39`, 1.18855424502237204245982611435889355629`10.150161813642105}, \
{0.4`, 1.18874577246213902999549917719397581806`10.15016403943455}, \
{0.41000000000000003`,
1.18893888673913718816239085959921300827`10.15016647480566}, \
{0.42`, 1.18913079448901372847071425596606415798`10.150169127460595}, \
{0.43`, 1.18932059827249291191611193650048025419`10.150172007918325}, \
{0.44`, 1.18950669811767987081387473794783891626`10.150175113715724}, \
{0.45`, 1.18968915445300407351696759437640184123`10.150178423972658}, \
{0.46`, 1.18985972428896766581133655551681849465`10.150182085754997}, \

{0.47000000000000003`,
1.19002104681249344876386412270101800885`10.150185759388084}, \
{0.48`, 1.19016952242699827655698958357092875653`10.150189687223024}, \
{0.49`, 1.19030547763549385898879426586721137023`10.150193849723912}, \
{0.5`, 1.19042787050031486985852726779782230046`10.150198114222395}, \
{0.51`, 1.19052801583257502374487101519390325807`10.150202519006331}, \
{0.52`, 1.1906093182289661791346373734943260447`10.150207017703748}, \
{0.53`, 1.19067118549954391337222408728456705723`10.150211546733617}, \
{0.54`, 1.19071032687888159318333403430958364913`10.150216107075877}, \
{0.55`, 1.19073082150197434983020870943152079834`10.150220660680072}, \

{0.56`, 1.19072086511798108551138407577744052908`10.15022509535085}, \
{0.5700000000000001`,
1.19069182461419092040567409734936353314`10.150229499780352}, \
{0.58`, 1.19064556190878943142338990071976078536`10.150233758391238}, \
{0.59`, 1.19057768397751717537652654987954296494`10.150237854816288}, \
{0.6`, 1.19050010566679115729884064746223945612`10.150241632415723}, \
{0.61`, 1.19039063639425968369664930111436488157`10.150245416200983}, \
{0.62`, 1.19027708262564635867877351184590442778`10.150249088960214}, \
{0.63`, 1.19014803937975389407612282728946175978`10.150252186532436}, \
{0.64`, 1.19001327730691568212411395140915222966`10.150255359723035}, \

{0.65`, 1.1898768785716821956534307017315848089`10.150258128622744}, \
{0.66`, 1.18973845314234188186140127355313425166`10.150260749919616}, \
{0.67`, 1.18958483945233891108536613846246629245`10.150263181934763}, \
{0.68`, 1.18943358976666146506842164084572241365`10.150265438096127}, \
{0.6900000000000001`,
1.18930010977643203922905561425915762546`10.150267617777969}, \
{0.7000000000000001`,
1.18915546542474811152336371498679055949`10.150269626203066}, \
{0.71`, 1.18901620253312209285463560085614608996`10.15027158560749}, \
{0.72`, 1.18887185104206753490263183359405373393`10.150273309619527}, \

{0.73`, 1.18874541644055776672011816291032847144`10.150275015912753}, \
{0.74`, 1.18860307099201988045343644546612380101`10.150276564078549}, \
{0.75`, 1.18847545968618153560623581253737184159`10.150278126479149}, \
{0.76`, 1.18833797204147656441490926752647287889`10.1502795618946}, \
{0.77`, 1.18821670465613570630987672922753348504`10.150280959329526}, \
{0.78`, 1.18808494865839066004739160715015860828`10.15028232381442}, \
{0.79`, 1.18795422916713071153358006847490674186`10.150283551074741}, \
{0.8`, 1.18783087747424795204015987525659113815`10.150284803304288}, \
{0.81`, 1.1877052703060172466268160197950883037`10.15028588213867}, \
{0.8200000000000001`,

1.18758654512563933604774558557717066808`10.150287080568598}, \
{0.8300000000000001`,
1.18745304192974233207793577770439372937`10.150288076145623}, \
{0.84`, 1.18733661069753847877677263398752475046`10.150289010220451}, \
{0.85`, 1.18722383596775992969926443504869487828`10.15028996794178}, \
{0.86`, 1.18710819529476237544094556263455008099`10.150290885609943}, \
{0.87`, 1.18699405174734280777020897414978862934`10.150291785273051}, \
{0.88`, 1.18688965564538960409268260983516427807`10.150292655996667}, \
{0.89`, 1.1867809536941748777594467703234920822`10.15029337833264}, \
{0.9`, 1.18667366555218316111579948315021075725`10.150294285395807}, \

{0.91`, 1.18656629248018676060904568960372345334`10.150294987232048}, \
{0.92`, 1.18646409770393525725867706164741815949`10.150295761702912}, \
{0.93`, 1.18635487946643892667384939989529576754`10.150296399809026}, \
{0.9400000000000001`,
1.18625745300756456208150303095049332279`10.150297093950826}, \
{0.9500000000000001`,
1.1861620735688408056538726708955698186`10.150297718729256}, \
{0.96`, 1.1860656637117756579869799410308606144`10.150298392329383}, \
{0.97`, 1.18596721336937762535814636417829095092`10.150298945874013}, \
{0.98`, 1.1858693354050745993584894522418044846`10.150299520454718}, \

{0.99`, 1.18577472453945230380023361746652944442`10.150299992648431}, \
{1.`, 1.18569008169844153629101442407780434947`10.150300711962917}, \
{1.01`, 1.18559669253394873818047326578860092501`10.150301166011534}, \
{1.02`, 1.18551265537338491807891812204863936437`10.150301620362068}, \
{1.03`, 1.18542767718467803360033333618215136921`10.150302217151856}, \
{1.04`, 1.18534072047673326000628031037118588409`10.150302403723256}, \
{1.05`, 1.18526181756818237420466195757378790079`10.150303144632279}, \
{1.06`, 1.18518868565276798351285071732332844322`10.150303565495298}, \
{1.07`, 1.18509178288413383455697568955897675177`10.150303922831133}, \
{1.08`, 1.1850355213425384487529473052798730554`10.150304575412909}, \

{1.09`, 1.18493195186491677637065068101390354217`10.15030460563073}, \
{1.1`, 1.18484771442634510501337582536467855168`10.15030528431727}, \
{1.11`, 1.18477525497349351354539407412606999244`10.150305722330051}, \
{1.12`, 1.18471190618925794245115225861755203572`10.150306070592235}, \
{1.1300000000000001`,
1.18461806509447682957836784369185460749`10.150306486485409}, \
{1.1400000000000001`,
1.18456146382292958445616585706621438412`10.150306703265027}, \
{1.1500000000000001`,
1.18449027612767088385493944808158074825`10.15030709645977}, \

{1.16`, 1.18443425874166656501864347176026419393`10.150307211863847}, \
{1.17`, 1.18436129613265970513331370216162596482`10.15030758076104}, \
{1.18`, 1.18427688737993616040472614494563126852`10.150307806446456}, \
{1.19`, 1.18421651846358388345701231847807261441`10.15030799585221}, \
{1.2`, 1.18412693224324216387337203477247337178`10.15030858089832}, \
{1.21`, 1.18408200332892491184401634853112444393`10.15030875102066}, \
{1.22`, 1.18401225099737511777128520080485739282`10.150309011613052}, \
{1.23`, 1.1839350577035649812462837697848924887`10.150309213336183}, \
{1.24`, 1.18388517616030219543826056633252687181`10.15030930657107}, \
{1.25`, 1.18381981346442808335878255424029131763`10.150309898922067}, \

{1.26`, 1.18376395161317898914026966499009268181`10.150310164681008}, \
{1.27`, 1.18368710993389566135697533141160860627`10.150310376648651}, \
{1.28`, 1.18363949471772771211094931359036002886`10.150310524317106}, \
{1.29`, 1.18357954666492938094293667179370085655`10.150311149747587}, \
{1.3`, 1.18353693725244644613157393845194070146`10.150311261945182}, \
{1.31`, 1.1834814812749550437217491742404091653`10.15031128080389}, \
{1.32`, 1.18342416914924530929307735425217944184`10.150311613801607}, \
{1.33`, 1.18335567699014096301598280998836074575`10.150311841967394}, \
{1.34`, 1.18331502919490750094551765230744921708`10.150311855554413}, \
{1.35`, 1.18326839741598695908926687990237415587`10.150312125125053}, \

{1.36`, 1.18319292580494775980393837636019113737`10.150312415634344}, \
{1.37`, 1.18312034479715932643047494163712090478`10.150312436662565}, \
{1.3800000000000001`,
1.18309080121913280150891110865262439631`10.150312614042607}, \
{1.3900000000000001`,
1.1830316300470869993446499419424910138`10.150312849648987}, \
{1.4000000000000001`,
1.18299986579049309569680300510462267886`10.150312855908242}, \
{1.41`, 1.18292825538990515758426402210745782306`10.150313039604022}, \
{1.42`, 1.18288290483940850510735447276683350197`10.150313393856498}, \

{1.43`, 1.18284225334693539050708117907340993809`10.150313537750211}, \
{1.44`, 1.18282121872304001680854482169024410415`10.150313735883156}, \
{1.45`, 1.18275028827190410095150648810996004891`10.150313852456524}, \
{1.46`, 1.18271642450896384722141896826124756474`10.150314127988807}, \
{1.47`, 1.18269270073147148830068607459324746053`10.150314259381846}, \
{1.48`, 1.18263247288706408986241682242701927129`10.15031440120737}, \
{1.49`, 1.18258559621279957755474614621157170363`10.150314510543048}, \
{1.5`, 1.18253879631858961340307615093859291033`10.150314625601283}, \
{1.51`, 1.18248853667583424461542829996654864378`10.150314846410698}, \
{1.52`, 1.18245747598716896750757715830264739442`10.150315092867952}, \

{1.53`, 1.18240973711630969018011084403352866881`10.150314754922315}, \
{1.54`, 1.1823577851917221676488437690835790542`10.15031508769071}, \
{1.55`, 1.18231542071521655570067914469987319607`10.150315119325198}, \
{1.56`, 1.18226571848263723247566973466517353123`10.150315413057548}, \
{1.57`, 1.18222328153602866623566576010567056576`10.150315572329683}, \
{1.58`, 1.18217451312679109097101137449908923645`10.150315569129033}, \
{1.59`, 1.18215513394417657331879332490345050317`10.150315765000197}, \
{1.6`, 1.18211774265495093891501138590941782499`10.15031582028033}, \
{1.61`, 1.18209181024692902798427119809528817353`10.150315994250498}, \
{1.62`, 1.18205524670206985524673231642842069886`10.150315790863985}, \

{1.6300000000000001`,
1.18201628994293679492088244593791123341`10.150316183646598}, \
{1.6400000000000001`,
1.18199218195396412865938166732916607169`10.150316356007309}, \
{1.6500000000000001`,
1.18194664397660029951505828909303310803`10.150316428135325}, \
{1.6600000000000001`,
1.18190859288357280522558680607842062691`10.150316534441941}, \
{1.67`, 1.18187348330033914364153565349742645591`10.150316661078165}, \
{1.68`, 1.1818495405656910692421847777377580515`10.150316483083778}, \

{1.69`, 1.18182198352727540569168639529830106886`10.150316616351255}, \
{1.7`, 1.18178746193556886667815286289694626698`10.150316872091436}, \
{1.71`, 1.18173117584640414735746186246364230024`10.150316950778215}, \
{1.72`, 1.18170357031296781370916431011639176448`10.150317066796621}, \
{1.73`, 1.18167801380742772552919434477835048561`10.150317259391949}, \
{1.74`, 1.18165206043570408125558951675973821034`10.150317338595462}, \
{1.75`, 1.1816090154945660729783953641895544833`10.150317204063029}, \
{1.76`, 1.18158050357136954756782520767930929785`10.150317362279198}, \
{1.77`, 1.18153924053170052085151130842935413511`10.150317496534377}, \
{1.78`, 1.18150184533104192598688899712315117705`10.150317570336469}, \

{1.79`, 1.18148680159329064451560527805816495814`10.150317530072915}, \
{1.8`, 1.18146640533920332085362832672415985213`10.150317596223168}, \
{1.81`, 1.18143209502009498638646281542358633285`10.150317704556144}, \
{1.82`, 1.18142110792284300407940364977601086148`10.150317685373727}, \
{1.83`, 1.18136798081100224758941530741934846214`10.15031776694788}, \
{1.84`, 1.18134558786138159334760650395837017926`10.150318265999157}, \
{1.85`, 1.18131462991635219221896252163564424193`10.150318038905366}, \
{1.86`, 1.18128302091277586748883033041442150676`10.15031800982169}, \
{1.87`, 1.18126402803554383416507395850358181001`10.150318300819787}, \
{1.8800000000000001`,

1.18123795930153001744619715579046689467`10.150318196968804}, \
{1.8900000000000001`,
1.18122462238157152361097713885868656029`10.150318253843034}, \
{1.9000000000000001`,
1.18119404888694304974250210730998723437`10.150318313582778}, \
{1.9100000000000001`,
1.18116045770176626398416442887634516094`10.15031841993495}, \
{1.92`, 1.18113602168666367886691502220061237735`10.150318322623548}, \
{1.93`, 1.18114513481451420477427130961665679913`10.150318628745543}, \
{1.94`, 1.18108826811482020106527448845720322577`10.150318590770675}, \

{1.95`, 1.18106560697558075923215888673963819832`10.150318528473091}, \
{1.96`, 1.18104782280895679570572989291495423423`10.150318766934454}, \
{1.97`, 1.1810317320722917340235352079808129476`10.150318856470907}, \
{1.98`, 1.18100722291484307464268902966903089954`10.150318822569904}, \
{1.99`, 1.18099362957534441415519431164272210934`10.1503189255491}, \
{2.`, 1.1809692590900748416751328889502418753`10.150318848444016}, \
{2.0100000000000002`,
1.18091436087475715288143109748545952446`10.150319096990764}, \
{2.02`, 1.18093388090682153748074094572635166618`10.150319046696161}, \
{2.0300000000000002`,

1.18088409550872914389621806443257768414`10.150319136323896}, \
{2.04`, 1.18086742161158942109422035615828424922`10.150319047000409}, \
{2.05`, 1.18085156729872714714096550678222923611`10.150319004986693}, \
{2.06`, 1.18085419341728958706286286637914732059`10.150319132650033}, \
{2.07`, 1.18081252968109136351021500035913199023`10.150319408313877}, \
{2.08`, 1.18079634169614375324704433903718921246`10.150319156211422}, \
{2.09`, 1.18075890494790883746588172584161324039`10.150319355484392}, \
{2.1`, 1.18075110945094865374222324127918795965`10.150319374649255}, \
{2.11`, 1.18073103327783297570129480325476901444`10.150319534311}, \
{2.12`, 1.18070633593071144590928416828625195008`10.15031954302383}, \

{2.13`, 1.1806898046852351388473137431463469094`10.150319543315083}, \
{2.14`, 1.18066861572714277767878487846597885857`10.15031962960358}, \
{2.15`, 1.18065018761881131493090904928518587328`10.150319607833053}, \
{2.16`, 1.18063292552199250905518641560577468807`10.150319749861913}, \
{2.17`, 1.18062102709483626743450116027108782721`10.150319754850342}, \
{2.18`, 1.18060406529779559723444717474235253855`10.150319735351882}, \
{2.19`, 1.18058665164381804732895291445055512447`10.150319820029056}, \
{2.2`, 1.18056617223435425175155706629953711257`10.150319880511699}, \
{2.21`, 1.18054689405580620013440462400070321051`10.150319861008644}, \
{2.22`, 1.18053066355023167469223980968670030235`10.150319904811823}, \

{2.23`, 1.18051433663530613279316577665188132458`10.150319943291501}, \
{2.24`, 1.18050561948186035190070601306403514893`10.150320013339043}, \
{2.25`, 1.18048735790823636898188577242636659913`10.150319936232428}, \
{2.2600000000000002`,
1.18047358256870323144781205364905150799`10.1503200024423}, \
{2.27`, 1.18045284425836003610183819602310982111`10.15032006948038}, \
{2.2800000000000002`,
1.18043318423569678280432921534772495023`10.150320097854435}, \
{2.29`, 1.18042205490595340640316049868951433544`10.150320139600492}, \
{2.3000000000000003`,

1.1804080664330128916841858733953962064`10.150320174993}, {2.31`,
1.18038941529283831613907223168965142054`10.150320177542772}, \
{2.32`, 1.18038455410165951359586395404854568313`10.150320276480821}, \
{2.33`, 1.18036718935573902329672139575135827985`10.150320223681874}, \
{2.34`, 1.18035775053568044946464396483048302296`10.150320335258167}, \
{2.35`, 1.18034230197134929817981075767585169461`10.150320348473715}, \
{2.36`, 1.18033056970535840931401072963026847378`10.150320387547922}, \
{2.37`, 1.18031710662004174760569617689021824006`10.150320413705433}, \
{2.38`, 1.18029850231687033272750676174596324433`10.150320399454788}, \
{2.39`, 1.18029315613612538342372210272335426953`10.150320616336812}, \

{2.4`, 1.18027136016388886609024108419546052058`10.15032049953037}, \
{2.41`, 1.1802683757398227804152332116438480561`10.150320532384328}, \
{2.42`, 1.18024818233949735052398592060266069481`10.150320539818848}, \
{2.43`, 1.18024066185043397345256423825981681447`10.15032057611617}, \
{2.44`, 1.18022432267000804084233260810718129599`10.150320559046884}, \
{2.45`, 1.18021116327552406361346016665879265821`10.150320563812805}, \
{2.46`, 1.18019936285550823302632808088898016066`10.150320637244697}, \
{2.47`, 1.18019101588451309001209519859425720985`10.150320637647223}, \
{2.48`, 1.18018786096338499449853791905465739753`10.150320636263197}, \
{2.49`, 1.18016459448109308818327022400910753323`10.150320604856626}, \

{2.5`, 1.18015519313440986415250313960183004747`10.15032074122922}, \
{2.5100000000000002`,
1.1801395093394907109725119477046775641`10.150320673420158}, \
{2.52`, 1.1801521189103215413303663227645363953`10.150320879595276}, \
{2.5300000000000002`,
1.1801307972602899695356580794903075229`10.150320703866537}, \
{2.54`, 1.1801219032572064046637548898437084353`10.15032077822856}, \
{2.5500000000000003`,
1.18010778328630934425504963985643981838`10.150320780679827}, \
{2.56`, 1.1800981476132935685234927964634260708`10.150320797194558}, \

{2.57`, 1.1800852880880741598233297715693878691`10.150320812448818}, \
{2.58`, 1.1800803367361048957098679244058279423`10.150320835462551}, \
{2.59`, 1.18007131998070713493031563275406521632`10.150320850568097}, \
{2.6`, 1.18006209240679324087354930157845795277`10.150320869927336}, \
{2.61`, 1.18005388978067128110124165523443609432`10.150320887923487}, \
{2.62`, 1.18004507530208995556184542018796405579`10.150320901991472}, \
{2.63`, 1.18003682106836963817060152637066436015`10.150320917134115}, \
{2.64`, 1.18002918014417911354002707927932125682`10.150320936635978}, \
{2.65`, 1.18001928474006261575689832562465017511`10.150320951961788}, \
{2.66`, 1.18001302942814922306819489909187068756`10.150320969148144}, \

{2.67`, 1.18000585845323368595610623797510024537`10.150320986058905}, \
{2.68`, 1.17999830319398077633955012371853220692`10.150320961943892}, \
{2.69`, 1.17998837347173506474908235560120900907`10.150321004684509}, \
{2.7`, 1.17998435855812018361859279886995554748`10.150321018737687}, \
{2.71`, 1.17997768538071662365172156796073798235`10.150321031963806}, \
{2.72`, 1.17997084743596308336277674607550724549`10.15032104801872}, \
{2.73`, 1.17996423995380682466274031016758504215`10.150321062210065}, \
{2.74`, 1.17995929066442214786274427131093720761`10.150321072884452}, \
{2.75`, 1.17995230170237949651812671147579581646`10.15032108285379}, \
{2.7600000000000002`,

1.17994612843326319735757104739063728625`10.150321099861214}, \
{2.77`, 1.17993882505107265878314852070597855445`10.150321086933197}, \
{2.7800000000000002`,
1.17993452640470845116188014746164546198`10.150321116360066}, \
{2.79`, 1.17992909870801670694847287322627336658`10.150321131596627}, \
{2.8000000000000003`,
1.17992439123620572181080232739291171754`10.150321147110823}, \
{2.81`, 1.17991912467737054169571074322045806068`10.15032114225105}, \
{2.82`, 1.17991480940324422553226187393945756974`10.150321154100451}, \
{2.83`, 1.17990958874666267274774447524562975543`10.150321181093055}, \

{2.84`, 1.17990564194203696094776943735162938735`10.150321172747566}, \
{2.85`, 1.17989994927618164916452938552678725266`10.15032120730178}, \
{2.86`, 1.17989755501309123951355728961865913188`10.150321198361539}, \
{2.87`, 1.17989232754353003171510898983896799535`10.150321194894682}, \
{2.88`, 1.17988845568961326992564992642119012053`10.150321197127615}, \
{2.89`, 1.17988589742719803584973730650738260995`10.150321212434863}, \
{2.9`, 1.17988176581893780962421803300552151788`10.15032119417042}, \
{2.91`, 1.17987875417937959585613984639853561569`10.150321197195288}, \
{2.92`, 1.17987965938957754449600847664661010376`10.150321205153638}, \
{2.93`, 1.17987402613409458459515189806653082172`10.150321201971883}, \

{2.94`, 1.17987222533192294311177015368629973929`10.150321206144982}, \
{2.95`, 1.17986957347002501590911694223837354359`10.150321212486556}, \
{2.96`, 1.17986677535605053823104454953534171341`10.15032121854462}, \
{2.97`, 1.17986323710674197821728392192023793707`10.150321215599114}, \
{2.98`, 1.17985949640129442747227095859703509117`10.150321207294247}, \
{2.99`, 1.17985551713664815217415823611544887084`10.15032118932838}, \
{3.`, 1.17985149480779907471182091433276932591`10.150321160381248}, \
{3.0100000000000002`,
1.17984770136888243517551916981756053725`10.150321118990874}, \
{3.02`, 1.17984424326886577914136687162659965423`10.150321065700378}, \

{3.0300000000000002`,
1.17984067863493941511370583225672568141`10.150321025113692}, \
{3.04`, 1.17983972280714366167920448006408726134`10.150320931432793}, \
{3.0500000000000003`,
1.17983713099698523369055172117943560253`10.150320881950467}, \
{3.06`, 1.17983805672222088042509478174748495443`10.150320777479246}, \
{3.0700000000000003`,
1.17983859248359339244678035006009651812`10.150320698649798}, \
{3.08`, 1.17984010278916593097573438815866905194`10.15032062546959}, \
{3.09`, 1.17984090117462542124244791687790076279`10.150320559809153},

{3.1`,
1.17982997239924707255835635158905814981`10.150320733070526}, \
{3.11`, 1.17984393058236338402998580037742437307`10.150320451743152}, \
{3.12`, 1.1798458854886468657719264206187240623`10.150320429716823}, \
{3.13`, 1.17984624533975615219754358686757348567`10.150320394862455}, \
{3.14`, 1.17984664133333547726439513516606186835`10.150320383670744}};

Sorry that this became so long, it was the quickest way to share the data with you.




Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...