Skip to main content

list manipulation - Dramatic speed difference of code on Matlab and Mathematica



Background: I was trying to convert a Matlab code (fluid simulation, SPH method) into a Mathematica one, but the speed difference is huge.


Matlab code:


function s = initializeDensity2(s)
nTotal = s.params.nTotal; %# particles
h = s.params.h;
h2Sq = (2*h)^2;
for ind1 = 1:nTotal %loop over all receiving particles; one at a time
%particle i is the receiving particle; the host particle
%particle j is the sending particle
xi = s.particles.pos(ind1,1);

yi = s.particles.pos(ind1,2);
xj = s.particles.pos(:,1); %all others
yj = s.particles.pos(:,2); %all others
mj = s.particles.mass; %all others
rSq = (xi-xj).^2+(yi-yj).^2;
%Boolean mask returns values where r^2 < (2h)^2
mask1 = rSqrSq = rSq(mask1);
mTemp = mj(mask1);
densityTemp = mTemp.*liuQuartic(sqrt(rSq),h);

s.particles.density(ind1) = sum(densityTemp);
end

And the corresponding Mathematica code:


Needs["HierarchicalClustering`"]
computeDistance[pos_] :=
DistanceMatrix[pos, DistanceFunction -> EuclideanDistance];
initializeDensity[distance_] :=
uniMass*Total/@(liuQuartic[#,h]&/@Pick[distance,Boole[Map[#<2h&,distance,{2}]],1])
initializeDensity[computeDistance[totalPos]]


The data are coordinates of 1119 points, in the form of {{x1,y1},{x2,y2}...}, stored in s.particles.pos and totalPos respectively. And liuQuartic is just a polynomial function. The complete Matlab code is way more than this, but it can run about 160 complete time steps in 60 seconds, whereas the Mathematica code listed above alone takes about 3 seconds to run. I don't know why there is such huge speed difference. Any thoughts is appreciated. Thanks.


Edit:


The liuQuartic is defined as


liuQuartic[r_,h_]:=15/(7Pi*h^2) (2/3-(9r^2)/(8h^2)+(19r^3)/(24h^3)-(5r^4)/(32h^4))

and example data can be obtained by


h=2*10^-3;conWidth=0.4;conHeight=0.16;totalStep=6000;uniDensity=1000;uniMass=1000*Pi*h^2;refDensity=1400;gamma=7;vf=0.07;eta=0.01;cs=vf/eta;B=refDensity*cs^2/gamma;gravity=-9.8;mu=0.02;beta=0.15;dt=0.00005;epsilon=0.5;

iniFreePts=Block[{},Table[{-conWidth/3+i,1.95h+j},{i,10h,conWidth/3-2h,1.5h},{j,0,0.05,1.5h}]//Flatten[#,1]&];

leftWallIniPts=Block[{x,y},y=Table[i,{i,conHeight/2-0.5h,0.2h,-0.5h}];x=ConstantArray[-conWidth/3,Length[y]];Thread[List[x,y]]];
botWallIniPts=Block[{x,y},x=Table[i,{i,-conWidth/3,-0.4h,h}];y=ConstantArray[0,Length[x]];Thread[List[x,y]]];
incWallIniPts=Block[{x,y},Table[{i,0.2125i},{i,0,(2conWidth)/3,h}]];
rightWallIniPts=Block[{x,y},y=Table[i,{i,Last[incWallIniPts][[2]]+h,conHeight/2,h}];x=ConstantArray[Last[incWallIniPts][[1]],Length[y]];Thread[List[x,y]]];
topWallIniPts=Block[{x,y},x=Table[i,{i,-conWidth/3+0.7h,(2conWidth)/3-0.7h,h}];y=ConstantArray[conHeight/2,Length[x]];Thread[List[x,y]]];
freePos = iniFreePts;
wallPos = leftWallIniPts~Join~botWallIniPts~Join~incWallIniPts~Join~rightWallIniPts~Join~topWallIniPts;
totalPos = freePos~Join~wallPos;

where conWidth=0.4, conHeight=0.16 and h=0.002




Answer



Modify the calculation order a little to avoid ragged array and then make use of Listable and Compile:


computeDistance[pos_] := DistanceMatrix[pos, DistanceFunction -> EuclideanDistance]
liuQuartic = {r, h} \[Function]
15/(7 Pi*h^2) (2/3 - (9 r^2)/(8 h^2) + (19 r^3)/(24 h^3) - (5 r^4)/(32 h^4));
initializeDensity =
With[{l = liuQuartic, m = uniMass},
Compile[{{d, _Real, 2}, {h, _Real}}, m Total@Transpose[l[d, h] UnitStep[2 h - d]]]];
new = initializeDensity[computeDistance[N@totalPos], h]; // AbsoluteTiming


Tested with your new added sample data, my code ran for 0.390000 s while the original code ran for 4.851600 s and ybeltukov's code ran for 0.813200 s on my machine.


If you have a C compiler installed, the following code


computeDistance[pos_] := DistanceMatrix[pos, DistanceFunction -> EuclideanDistance]
liuQuartic = {r, h} \[Function]
15/(7 Pi*h^2) (2/3 - (9 r^2)/(8 h^2) + (19 r^3)/(24 h^3) - (5 r^4)/(32 h^4));
initializeDensity =
With[{l = liuQuartic, m = uniMass, g = Compile`GetElement},
Compile[{{d, _Real, 2}, {h, _Real}},
Module[{b1, b2}, {b1, b2} = Dimensions@d;
m Table[Sum[If[2 h > g[d, i, j], l[g[d, i, j], h], 0.], {j, b2}], {i, b1}]],

CompilationTarget -> "C", RuntimeOptions -> "Speed"]];

will give you a 2X speedup once again. Notice the C compiler is necessary, see this post for some more details.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...