PredictorMeasurements
doesn't work with NetGraph
, here's an example:
makeRule[a_, b_] :=
IntegerString[a] <> "+" <> IntegerString[b] -> a + b;
data = Table[makeRule[i, j], {i, 0, 99}, {j, 0, 99}];
enc = NetEncoder[{"Characters", {DigitCharacter, "+"}}];
net = NetInitialize@
NetChain[{UnitVectorLayer[], LongShortTermMemoryLayer[40],
LongShortTermMemoryLayer[20], SequenceLastLayer[],
LinearLayer[]}, "Input" -> enc, "Output" -> "Real"];
PredictorMeasurements[net, data, "Accuracy"]
Is there any way to make this work? Perhaps converting the net into a predictor?
Answer
Let's look under the hood of Predict
.
p = Predict[{{1, 2} -> 3, {2, 3} -> 4},
Method -> {"NeuralNetwork", "NetworkType" -> "Recurrent"}];
Options[p][[1]]["Model"]["Network"]
The network has 2 outputs: mean and log-variance.
Options[p][[1]]["Model"]["Options"]["Network"]["Value"]
Loss function is very interesting:
Options[p][[1]]["Model"]["Options"]["LossFunction"]["Value"]
And now let's replace trained network in Predict
with our custom net.
net = NetGraph[
{
LongShortTermMemoryLayer[40],
NetMapOperator[LinearLayer[10]],
LongShortTermMemoryLayer[20],
SequenceLastLayer[],
LinearLayer[100],
Ramp,
LinearLayer[2],
PartLayer[1 ;; 1],
PartLayer[2 ;; 2]
},
{1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> {8, 9},
8 -> NetPort["logvariance"], 9 -> NetPort["mean"]},
"Input" -> {"Varying", 1}, "logvariance" -> 1, "mean" -> 1
] // NetInitialize
GeneralUtilities`PrintDefinitions@PredictorFunction
We can see that PredictorFunction
expects Association
as the input.
assoc = Options[p][[1]];
assoc["Model"]["Network"] = net;
p1 = PredictorFunction[assoc]
We can make predictions:
p1[{{1, 2}, {2, 3}}]
{3.49756, 3.50435}
And we can do PredictorMeasurements
:
pm1 = PredictorMeasurements[p1, {{1, 2} -> 3, {2, 3} -> 4}]
pm1["MeanSquare"]
0.246618
Addendum
makeRule[a_, b_] := IntegerString[a] <> "+" <> IntegerString[b] -> a + b;
data = Table[makeRule[i, j], {i, 0, 99}, {j, 0, 99}] // Flatten;
enc = NetEncoder[{"Characters", {DigitCharacter, "+"}}];
fe = FeatureExtraction[data[[;; , 1]], enc];
p = Predict[
data[[-2 ;;, 1]] -> data[[-2 ;;, 2]],
Method -> {"NeuralNetwork", "NetworkType" -> "Recurrent"},
FeatureExtractor -> fe
];
net = NetGraph[
{
(* UnitVectorLayer does not supported because of Standardize as the data processor *)
LongShortTermMemoryLayer[40],
LongShortTermMemoryLayer[20],
SequenceLastLayer[],
LinearLayer[2],
PartLayer[1 ;; 1],
PartLayer[2 ;; 2]
},
{1 -> 2 -> 3 -> 4 -> {5, 6}, 5 -> NetPort["logvariance"], 6 -> NetPort["mean"]},
"Input" -> {"Varying", 1}, "logvariance" -> 1, "mean" -> 1
];
loss = Options[p][[1]]["Model"]["Options"]["LossFunction"]["Value"];
net = NetGraph[
{
net,
loss
},
{
NetPort["Input"] -> 1,
NetPort[1, "logvariance"] -> NetPort[2, "Input1"],
NetPort[1, "mean"] -> NetPort[2, "Input2"],
NetPort["Target"] -> NetPort[2, "Target"]
}
];
netT = NetTrain[
net,
<|
"Input" -> (Partition[#, 1] & /@ Standardize /@ enc@data[[;; , 1]]),
"Target" -> Partition[data[[;; , 2]], 1],
"Output" -> data[[;; , 2]]
|>,
MaxTrainingRounds -> 1
];
netT = NetExtract[netT, 1];
assoc = Options[p][[1]];
assoc["Model"]["Network"] = netT;
p1 = PredictorFunction[assoc];
pm1 = PredictorMeasurements[p1, data]
Comments
Post a Comment