Skip to main content

graphics3d - How to draw a dodecahedron with each face modified to a pentagram?



I'd like to draw a dodecahedron with each face carved on the sides so it becomes a pentagram. I wonder how to start to do this kind of task in the Wolfram Language?


Edit:


The result should still be a completely enclosed polyhedron; i.e., the carved out parts should be connected by newly added faces. I don't want the result to have holes.



Answer



Solution from @chuy looks really nice. Although I think that it was a little bit of work around because it's a visualization only, but the defined structure doesn't really represent the carved dodecahedron. Here is my approach of carving a dodecahedron pumpkin into pentagrams.


First we define a function that makes a pentagram from a pentagon.


tau = (2 Sqrt[5])/(5 + Sqrt[5]);
pentagram[pts_] :=
Riffle[pts, #] &@(pts[[# + 1]]*tau + (1 - tau)*
pts[[1 + Mod[# + 2, 5]]] & /@ Range[0, 4, 1]);


Then we apply this function to all faces of dodecahedron.


ind = PolyhedronData["Dodecahedron", "FaceIndices"];
vert = PolyhedronData["Dodecahedron", "VertexCoordinates"];
polyVerts = Reverse@*pentagram /@ (vert[[#]] & /@ ind);

Note the Reverse, it doesn't have to be there, since it just changes the orientation of the pentagram, but it's required to avoid weird artifacts while rendering, see more discussion here.


Now we need to create inner faces of our pumpkin.


pairs = Partition[#, 2] &@Riffle[#, #*85/100] &@polyVerts; 


pairs contain the outer face and inner face. The last thing to do is create wedges that will connect inner faces with outer faces.


wedges[face_] := (Permute[#, Cycles[{{4, 3}}]] &@Flatten[#, 1] &@
face[[1 ;; -1, #, 1 ;; -1]]) & /@
Partition[#, 2, 1] &@(Range[1, 10]~Join~{1});

Now we need to draw all our polygons: faces and wedges:


Graphics3D[
Join[{EdgeForm[{Black, Thick}], Orange},
Polygon /@ Join[wedges[#], #] & /@ pairs], Boxed -> False]


Carved pumpkin


Edit: It has been requested to have no holes in the resulting polyhedron. So no more pumpkin carving.


Let's make a list of all added vertices and include the original pentagon vertex indices that produced these additional concave vertices.


pairList[l_, r_] := Partition[#, 2] &@Riffle[#, RotateLeft[#, r]] &@ l;

concVerts[vert_, face_] :=
Partition[#, 2] &@
Riffle[Sort /@ pairList[face, 1],
vert[[First[#]]]*tau + (1 - tau)*vert[[Last[#]]] & /@
pairList[face, 2]];

concave = Flatten[#, 1] &@(concVerts[vert, #] & /@ ind);

Now we will fill holes with triangles, every triangle has two concave vertices and one original pentagon vertex.


triang[vert_, up_, edge_, 
conc_] := {vert[[#[[1, up]]]], #[[2]], #[[4]]} &@Flatten[#, 1] &@
Select[concave, #[[1]] == edge &];

tri = Flatten[#, 1] &@
Table[triang[vert, i, edges[[j]], concave], {i, 1, 2}, {j, 1,
Length@edges}];

Graphics3D[
Join[Polygon /@ tri, {EdgeForm[{Black, Thick}], Orange},
Polygon /@ polyVerts], Boxed -> False]

Carved dodecahedron


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

dynamic - How can I make a clickable ArrayPlot that returns input?

I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use? Answer ArrayPlot is much more than just a simple array like Grid : it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange . These features make it quite complicated to reproduce the same layout and order with Grid . Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled , HighlightCoordinates , HighlightStyle and HighlightElementFunction . data = {{Missing["HasSomeMoreData"], GrayLevel[ 1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]}, RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel...