Skip to main content

performance tuning - Speeding up an intrinsically sequential operation



I am new to Mathematica and I am trying to measure its performance on a fundamentally sequential procedure.




  1. It involves a function STEP that operates on a List and returns an updated List.




  2. Therefore I use a NestList on this operation. The STEP operation involves a sequential calculation per each item in the List. There is no way to avoid this sequential operation without changing the problem.




  3. Each subsequent operation of STEP needs to use the latest List. In fact, it involves a matrix multiplication involving the latest List. I used a table and individual assignments to make this work.





I see no way of rewriting this code, at least easily, but I also see that a naive MATLAB implementation with two FOR loops produces code that is 4-5X faster on my laptop.


Below is a minimal code that shows what I am trying to do, it really slows down for larger NM and stepcount.


Am I missing something obvious?


Edit: The matrix shown below is not identically zero in general, one could think of it is any random matrix whose diagonals are zero. Here, it is a trivial example chosen to show the structure of the code.


ClearAll["Global`*"]
SeedRandom[1];
NM = 5;
minitial = 2 RandomInteger[{}, NM] - 1.;

Matrix = IdentityMatrix[5] 0;
stepcount = 10^2;
STEP[m_] :=
Block[{md = m},
Table[md[[i]] =
Sign[Tanh[Matrix[[i, All]].md + RandomReal[{-1, 1}]]], {i, NM}];
md]
mm = (NestList[STEP[#] &, minitial, stepcount] + 1.)/2 // ArrayPlot

Edit: Just to clarify what I am trying to do, here is how it can be done in MATLAB. Please note that the for loops are unavoidable in this way of thinking.



for ii=1:NT
for jj=1:NM
I = Matrix(jj,:)*m
m(jj) = sign (tanh[I]- rand(-1,1))
end
mm(:,ii)=m;
end

Maybe there is a more efficient way of doing this in Mathematica than how I implemented it. Hope this clarifies the problem.



Answer




Using Compile is a straightforward way to speed up procedural code based on machine numbers:


OP's:


SeedRandom[1];
NM = 50;
minitial = 2 RandomInteger[{}, NM] - 1.;
Matrix = IdentityMatrix[NM] 0;
stepcount = 10^4;
STEP[m_] := Block[{md = m},
Table[md[[i]] = Sign[Tanh[Matrix[[i, All]].md + RandomReal[{-1, 1}]]],
{i, NM}]];

mm1 = (NestList[STEP[#] &, minitial, stepcount] + 1.)/2; // AbsoluteTiming
(* {1.4655, Null} *)

Compiled:


cf = Compile[{{minitial, _Real, 1}, {Matrix, _Real, 
2}, {stepcount, _Integer}},
Block[{md = minitial},
Rescale@Table[
If[i == 0, (* i = 0 probably isn't needed *)
md[[j]], (* except to conform with NestList *)

md[[j]] =
Sign[Tanh[Matrix[[j, All]].md + RandomReal[{-1, 1}]]]
],
{i, 0, stepcount}, {j, Length@minitial}]
](*, CompilationTarget -> "C"*)
];

SeedRandom[1];
NM = 50;
minitial = 2 RandomInteger[{}, NM] - 1.;

mm2 = cf[minitial, Matrix, stepcount]; // AbsoluteTiming
(* {0.162614, Null} *)

mm1 == mm2
(* True *)

Use CompilationTarget -> "C" and it speeds up by another factor of 2.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...