Skip to main content

simplifying expressions - Separating exponential terms


Suppose I have a lot of expressions multiplied by factors such as:


e−iθ[1]−iθ[2]−iθ[3]−iθ[4]−iθ[5]


I would like to separate this into a product of exponentials of the form


e−iθ[1]e−iθ[2]...


before employing the function ExpToTrig and making substitutions to the result trigonometric functions.



However, since I plan to apply the tangent half angle substitution (cf. my previous question Simplifying Expressions for FindMinimum), I would like the arguments to involve only one variable at a time. In particular, I tried using ComplexExpand on the function to express the trigonometric functions as functions of a single variable, but it expands the entire function out.


In short, I would like to keep the simplified form, but want to expand the exponential as per the above without having to expand the entire expression.


For reference, here is my function


(E^(-I θ[1] - I θ[2] - I θ[3] - I θ[4] - I (θ[5] - θ[6]))
Abs[Sin[ϕ[6]]]^2 (1 - E^(I (θ[1] - θ[6]))
Cot[ϕ[6]/2] Tan[ϕ[1]/2]) (Cos[θ[1]] + I Sin[θ[1]] + E^(I θ[2])
Tan[ϕ[1]/2] Tan[ϕ[2]/2]) (Cos[θ[2]] + I Sin[θ[2]] + E^(I θ[3])
Tan[ϕ[2]/2] Tan[ϕ[3]/2]) (Cos[θ[3]] + I Sin[θ[3]] + E^(I θ[4])
Tan[ϕ[3]/2] Tan[ϕ[4]/2]) (Cos[θ[5] - θ[6]] + I Sin[θ[5] - θ[6]] - Cot[ϕ[6]/2]
Tan[ϕ[5]/2]) (Cos[θ[4]] + I Sin[θ[4]] + E^(I θ[5])

Tan[Ï•[4]/2] Tan[Ï•[5]/2]))/
(2 Sqrt[(1 + Abs[Tan[Ï•[1]/2]]^2) (1 + Abs[Tan[Ï•[2]/2]]^2)]
Sqrt[(1 + Abs[Tan[Ï•[2]/2]]^2) (1 + Abs[Tan[Ï•[3]/2]]^2)]
Sqrt[(1 + Abs[Tan[Ï•[3]/2]]^2) (1 + Abs[Tan[Ï•[4]/2]]^2)]
Sqrt[(1 + Abs[Tan[Ï•[4]/2]]^2) (1 + Abs[Tan[Ï•[5]/2]]^2)]
Sqrt[(1 + Abs[Tan[Ï•[1]/2]]^2) (1 + Cos[Ï•[6]])]
Sqrt[(1 + Abs[Tan[Ï•[5]/2]]^2) (1 + Cos[Ï•[6]])])

Answer



Update


In the interest of simplifying the code somewhat, I've modified one of the replacements. For instance, we can do



expr2 = Thread[expr1, Plus] /. Plus -> Times

or


epxr2 = expr1 /. expT[Plus[a__]] :> Times @@ expT /@ a

rather than


expr2 = expr1 //. {expT[a_ + b_] :> expT[a] expT[b]}

So:


f[expr_] := Thread[expr /. Power[E, a_] :> expT@Expand@a, Plus] /. Plus -> Times /. expT[a_] :> ExpToTrig@Exp@a


or


f[expr_] := expr /. Power[E, a_] :> expT@Expand@a /. expT[Plus[a__]] :> Times @@ expT /@ a /. expT[a_] :> ExpToTrig@Exp@a

Original Post


As Bill commented, Mathematica likes to keep Exp[]'s together. Here's a workaround that I've used in the past. We replace Exp with a dummy head expT, do the re-write using replacement rules, and in the process apply ExpToTrig.


For instance, if


expr = Exp[-I (4 + a) + c];

we first do



expr1 = expr /. Power[E, a_] :> expT@Expand@a
(* expT[-4 I - I a + c] *)

Then, we separate the terms inside expT using ReplaceRepeated:


expr2 = expr1 //. {expT[a_ + b_] :> expT[a] expT[b]}
(* expT[-4 I] expT[-I a] expT[c] *)

Finally, we convert back to Exp and apply ExpToTrig:


expr2 /. expT[a_] :> ExpToTrig@Exp@a
(* (Cos[4] - I Sin[4]) (Cos[a] - I Sin[a]) (Cosh[c] + Sinh[c]) *)


We can do all at once, of course. Define


f[expr_] := expr /. Power[E, a_] :> expT@a //. {expT[a_ + b_] :> expT[a] expT[b]} /. expT[a_] :> ExpToTrig@Exp@a

in which case


f[expr]
(* (Cos[4] - I Sin[4]) (Cos[a] - I Sin[a]) (Cosh[c] + Sinh[c]) *)

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...