Skip to main content

differential equations - NDSolve Dankwerts boundary conditions with changing discrete variable


I'm modeling a advection-diffusion-reaction plug flow reactor (2nd order ODE) at steady state: 0=−vδp[z]δz+Dδ2p[z]δz2−kp[z]

With Dankwerts boundary conditions:


vp∣0−=vp∣0+−Dδpδz∣0+      z=0

δpδz=0               z=l


And here is my code:


params = {Dif -> 0.8, k -> 0.5, v -> 0.25, l -> 5, p1in -> 300};
NDSolve[{0 == -k p[z] - v p'[z] + Dif p''[z], p1in v == v p[0] - Dif Derivative[1][p][0], Derivative[1][p][l] == 0} /. params, p, {z, 0, 5}]


I am trying to have v change at certain points along the length... so I tried changing v to v[z] and using WhenEvent and DiscreteVariable like this:


params = {Dif -> 0.8, k -> 0.5(*,v\[Rule]0.25*), l -> 5, p1in -> 300};
NDSolve[ {0 == -k p[z] - v[z] p'[z] + Dif p''[z], p1in v[z] == v[z] p[0] - Dif Derivative[1][p][0], Derivative[1][p][l] == 0, v[0] == 0.25, WhenEvent[z == 1, v[z] -> 0.50]} /. params, {p, v}, {z, 0, 5}, DiscreteVariables -> {v}]

But it keeps reading v[z] as a dependent variable (not surprisingly) and giving me an error.... I am pretty sure it has to do with the boundary conditions p1in v[z] == v[z] p[0] - Dif Derivative[1][p][0] because this approach works for a regular 1st order ODE in NDSolve


Question is, how can I make v a changing discrete variable for the 2nd order ODE that I have above? i.e. make it work for my boundary conditions.




Thanks @bbgodfrey for the if statement approach (below). As per his comment on using a Piecewise statement I tried doing it and worked well like this:


params = {Dif -> 0.8, k -> 0.5, l -> 5, p1in -> 300, v -> 0.1, vv -> 5};

s2 = NDSolve[{0 == -k p[z] - Piecewise[{{v, z < 1}, {vv, z >= 1}}] p'[z] + Dif p''[z], p1in v == v p[0] - Dif Derivative[1][p][0], Derivative[1][p][l] == 0} /. params, p, {z, 0, 5}];

Answer



As I noted in my comment, replacing v by an If or Piecewise function works. For instance,


params = {Dif -> 0.8, k -> 0.5, v -> 0.25, l -> 5, p1in -> 300};
s2 = ParametricNDSolve[{0 == -k p[z] - If[z < 1, v, vv] p'[z] +
Dif p''[z], p1in v == v p[0] - Dif Derivative[1][p][0],
Derivative[1][p][l] == 0} /. params, p, {z, 0, 5}, {vv}];
Plot[Evaluate[Table[p[vv][z] /. s2, {vv, {.25, .5, 1, 2}}]], {z, 0, 5}]

enter image description here



This approach is generalizable to multiple changes in the "constants". Generally, WhenEvent is need only for changes to occur when a dependent function reaches some value.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...