Skip to main content

list manipulation - Efficient discrete Laplacian of a matrix


I would like to compute the discrete Laplacian of a real matrix (numeric values and full), using any method and targetting efficiency (I will call the Laplacian dozens of thousands of time).


I naively defined the following function:



laplacian[Z_] := Block[{Zcenter, Ztop, Zleft, Zbottom, Zright},
Zcenter = Z[[2 ;; -2, 2 ;; -2]];
Ztop = Z[[;; -3, 2 ;; -2]];
Zleft = Z[[2 ;; -2, ;; -3]];
Zbottom = Z[[3 ;;, 2 ;; -2]];
Zright = Z[[2 ;; -2, 3 ;;]];
Ztop + Zleft + Zbottom + Zright - 4*Zcenter
]

It reduces the dimension of the input (because the Laplacian for the elements of the border of the array is not computed) but I am fine with that.



I also tried writing the function in a compiled way:


compileLaplacian = Compile[{{Z, _Real, 2}},
Module[{Zcenter = Z[[2 ;; -2, 2 ;; -2]],
Ztop = Z[[;; -3, 2 ;; -2]],
Zleft = Z[[2 ;; -2, ;; -3]],
Zbottom = Z[[3 ;;, 2 ;; -2]],
Zright = Z[[2 ;; -2, 3 ;;]]},
Ztop + Zleft + Zbottom + Zright - 4*Zcenter
]
]


but it returns the error



Compile::cpintlt: 3;;All at position 2 of Z[[3;;All,2;;-2]] should be either a nonzero integer or a vector of nonzero integers; evaluation will use the uncompiled function.



Can I improve my discrete Laplacian function in terms of computation time? (targeted matrices are $100\times 100$ to $10000\times 10000$)




Edit The following graph summarizes the timings for the different proposed functions. RAM is not monitored. I'll investigate Szabolcs's suggestion using packed array to see if timing can be further reduced.


enter image description here


Full code for the image:



laplacian[Z_] := 
Block[{Zcenter, Ztop, Zleft, Zbottom, Zright},
Zcenter = Z[[2 ;; -2, 2 ;; -2]];
Ztop = Z[[;; -3, 2 ;; -2]];
Zleft = Z[[2 ;; -2, ;; -3]];
Zbottom = Z[[3 ;;, 2 ;; -2]];
Zright = Z[[2 ;; -2, 3 ;;]];
Ztop + Zleft + Zbottom + Zright - 4*Zcenter]
lapJM[Z_] :=
Differences[ArrayPad[Z, {{0, 0}, {-1, -1}}], 2] +

Differences[ArrayPad[Z, {{-1, -1}, {0, 0}}], {0, 2}]

<< CompiledFunctionTools`
Compiler`$CCompilerOptions = {"SystemCompileOptions" -> "-fPIC -Ofast -march=native"};

lapxzczd =
Hold@Compile[{{z, _Real, 2}},
Module[{d1, d2}, {d1, d2} = Dimensions@z;
Table[
z[[i + 1, j]] + z[[i, j + 1]] + z[[i - 1, j]] +

z[[i, j - 1]] - 4 z[[i, j]],
{i, 2, d1 - 1}, {j, 2, d2 - 1}]
],
CompilationTarget -> "C",
RuntimeOptions -> "Speed"] /. Part -> Compile`GetElement // ReleaseHold;

d2 = SparseArray@
N@Sum[NDSolve`FiniteDifferenceDerivative[i, {#, #} &[Range[1000]],
"DifferenceOrder" -> 2][
"DifferentiationMatrix"], {i, {{2, 0}, {0, 2}}}];


lapJens[values_] := Partition[d2.Flatten[values], Length[values]]

src = "
#include \"WolframLibrary.h\"

DLLEXPORT int laplacian(WolframLibraryData libData, mint Argc, \
MArgument *Args, MArgument Res) {
MTensor tensor_A, tensor_B;
mreal *a, *b;

mint const *A_dims;
mint n;
int err;
mint dims[2];
mint i, j;
tensor_A = MArgument_getMTensor(Args[0]);
a = libData->MTensor_getRealData(tensor_A);
A_dims = libData->MTensor_getDimensions(tensor_A);
n = A_dims[0];
dims[0] = dims[1] = n - 2;

err = libData->MTensor_new(MType_Real, 2, dims, &tensor_B);
b = libData->MTensor_getRealData(tensor_B);
for (i = 1; i <= n - 2; i++) {
for (j = 1; j <= n - 2; j++) {
b[(n-2)*(i-1)+j-1] = a[n*(i-1)+j] + a[n*i+j-1] + \
a[n*(i+1)+j] + a[n*i+j+1]- 4*a[n*i+j];
}
}
MArgument_setMTensor(Res, tensor_B);
return LIBRARY_NO_ERROR;

}
";
Needs["CCompilerDriver`"]
lib = CreateLibrary[src, "laplacian"];
lapShutao = LibraryFunctionLoad[lib, "laplacian", {{Real, 2}}, {Real, 2}];

compare[n_] := Block[{mat = RandomReal[10, {n, n}]},
d2 = SparseArray@
N@Sum[NDSolve`FiniteDifferenceDerivative[i, {#, #} &[Range[n]],
"DifferenceOrder" -> 2][

"DifferentiationMatrix"], {i, {{2, 0}, {0, 2}}}];
{AbsoluteTiming[Array[laplacian[mat] &, 10];],
If[n > 1000, {12345, 0},
AbsoluteTiming[Array[lapJM[mat] &, 10];]],
AbsoluteTiming[Array[lapxzczd[mat] &, 10];],
AbsoluteTiming[Array[lapJens[mat] &, 10];],
AbsoluteTiming[Array[lapShutao[mat] &, 10];]}[[All, 1]]]

tab = Table[{Floor[1.3^i], #} & /@ compare[Floor[1.3^i]], {i, 6, 31}];


ListLinePlot[Transpose@tab,
PlotLegends -> {"original", "JM", "xzczd", "Jens", "Shutao"},
AxesLabel -> {"Size", "Time"}]

Answer



Accodrding to your laplacian[] function, I can draw the following conclusion:


For a matrix $A_{n\times n}$


$$ \left( \begin{array}{cccc} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{1,1} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \\ \end{array} \right)_{n \times n} $$


$$\mathcal{L}(a_{i,j}) \Longleftrightarrow b_{i-1,j-1}=a_{i-1,j}+a_{i+1,j}+a_{i,j-1}+a_{i,j+1}-4 \cdot a_{i,j}$$


where, the $b_{i,j}$ is the element of matrix $B_{(n-2)\times(n-2)}$, and $i=2,\cdots ,n-1, \quad j=2,\cdots,n-1$


Here, I will give a C solution with the help of LibraryLink wrapper.



src = "
#include \"WolframLibrary.h\"

DLLEXPORT int laplacian(WolframLibraryData libData, mint Argc, MArgument *Args, MArgument Res) {
MTensor tensor_A, tensor_B;
mreal *a, *b;
mint const *A_dims;
mint n;
int err;
mint dims[2];

mint i, j, idx;
tensor_A = MArgument_getMTensor(Args[0]);
a = libData->MTensor_getRealData(tensor_A);
A_dims = libData->MTensor_getDimensions(tensor_A);
n = A_dims[0];
dims[0] = dims[1] = n - 2;
err = libData->MTensor_new(MType_Real, 2, dims, &tensor_B);
b = libData->MTensor_getRealData(tensor_B);
for (i = 1; i <= n - 2; i++) {
for (j = 1; j <= n - 2; j++) {

idx = n*i + j;
b[idx+1-2*i-n] = a[idx-n] + a[idx-1] + a[idx+n] + a[idx+1] - 4*a[idx];
}
}
MArgument_setMTensor(Res, tensor_B);
return LIBRARY_NO_ERROR;
}
";




Needs["CCompilerDriver`"]
lib = CreateLibrary[src, "laplacian"];

lapShutao = LibraryFunctionLoad[lib, "laplacian", {{Real, 2}}, {Real, 2}]

OK, let's test it


mat = RandomReal[10, {1000, 1000}];
lapShutao[mat]; // AbsoluteTiming

enter image description here



Remark:


In my laptop that with 4GB RAM, I discovered that when $n = 15000$, the lapShutao[] and cLa[] will lead to system halted.


Update


For the following code:


b[(n-2)*(i-1)+j-1] = a[n*(i-1)+j] + a[n*i+j-1] + a[n*(i+1)+j] + a[n*i+j+1] - 4*a[n*i+j];

let idx = n*i+j, then the above code could be refactored as below:


b[idx+1-2*i-n] = a[idx-n] + a[idx-1] + a[idx+n] + a[idx+1] - 4*a[idx];

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.