Skip to main content

list manipulation - Efficient discrete Laplacian of a matrix


I would like to compute the discrete Laplacian of a real matrix (numeric values and full), using any method and targetting efficiency (I will call the Laplacian dozens of thousands of time).


I naively defined the following function:



laplacian[Z_] := Block[{Zcenter, Ztop, Zleft, Zbottom, Zright},
Zcenter = Z[[2 ;; -2, 2 ;; -2]];
Ztop = Z[[;; -3, 2 ;; -2]];
Zleft = Z[[2 ;; -2, ;; -3]];
Zbottom = Z[[3 ;;, 2 ;; -2]];
Zright = Z[[2 ;; -2, 3 ;;]];
Ztop + Zleft + Zbottom + Zright - 4*Zcenter
]

It reduces the dimension of the input (because the Laplacian for the elements of the border of the array is not computed) but I am fine with that.



I also tried writing the function in a compiled way:


compileLaplacian = Compile[{{Z, _Real, 2}},
Module[{Zcenter = Z[[2 ;; -2, 2 ;; -2]],
Ztop = Z[[;; -3, 2 ;; -2]],
Zleft = Z[[2 ;; -2, ;; -3]],
Zbottom = Z[[3 ;;, 2 ;; -2]],
Zright = Z[[2 ;; -2, 3 ;;]]},
Ztop + Zleft + Zbottom + Zright - 4*Zcenter
]
]


but it returns the error



Compile::cpintlt: 3;;All at position 2 of Z[[3;;All,2;;-2]] should be either a nonzero integer or a vector of nonzero integers; evaluation will use the uncompiled function.



Can I improve my discrete Laplacian function in terms of computation time? (targeted matrices are 100×100 to 10000×10000)




Edit The following graph summarizes the timings for the different proposed functions. RAM is not monitored. I'll investigate Szabolcs's suggestion using packed array to see if timing can be further reduced.


enter image description here


Full code for the image:



laplacian[Z_] := 
Block[{Zcenter, Ztop, Zleft, Zbottom, Zright},
Zcenter = Z[[2 ;; -2, 2 ;; -2]];
Ztop = Z[[;; -3, 2 ;; -2]];
Zleft = Z[[2 ;; -2, ;; -3]];
Zbottom = Z[[3 ;;, 2 ;; -2]];
Zright = Z[[2 ;; -2, 3 ;;]];
Ztop + Zleft + Zbottom + Zright - 4*Zcenter]
lapJM[Z_] :=
Differences[ArrayPad[Z, {{0, 0}, {-1, -1}}], 2] +

Differences[ArrayPad[Z, {{-1, -1}, {0, 0}}], {0, 2}]

<< CompiledFunctionTools`
Compiler`$CCompilerOptions = {"SystemCompileOptions" -> "-fPIC -Ofast -march=native"};

lapxzczd =
Hold@Compile[{{z, _Real, 2}},
Module[{d1, d2}, {d1, d2} = Dimensions@z;
Table[
z[[i + 1, j]] + z[[i, j + 1]] + z[[i - 1, j]] +

z[[i, j - 1]] - 4 z[[i, j]],
{i, 2, d1 - 1}, {j, 2, d2 - 1}]
],
CompilationTarget -> "C",
RuntimeOptions -> "Speed"] /. Part -> Compile`GetElement // ReleaseHold;

d2 = SparseArray@
N@Sum[NDSolve`FiniteDifferenceDerivative[i, {#, #} &[Range[1000]],
"DifferenceOrder" -> 2][
"DifferentiationMatrix"], {i, {{2, 0}, {0, 2}}}];


lapJens[values_] := Partition[d2.Flatten[values], Length[values]]

src = "
#include \"WolframLibrary.h\"

DLLEXPORT int laplacian(WolframLibraryData libData, mint Argc, \
MArgument *Args, MArgument Res) {
MTensor tensor_A, tensor_B;
mreal *a, *b;

mint const *A_dims;
mint n;
int err;
mint dims[2];
mint i, j;
tensor_A = MArgument_getMTensor(Args[0]);
a = libData->MTensor_getRealData(tensor_A);
A_dims = libData->MTensor_getDimensions(tensor_A);
n = A_dims[0];
dims[0] = dims[1] = n - 2;

err = libData->MTensor_new(MType_Real, 2, dims, &tensor_B);
b = libData->MTensor_getRealData(tensor_B);
for (i = 1; i <= n - 2; i++) {
for (j = 1; j <= n - 2; j++) {
b[(n-2)*(i-1)+j-1] = a[n*(i-1)+j] + a[n*i+j-1] + \
a[n*(i+1)+j] + a[n*i+j+1]- 4*a[n*i+j];
}
}
MArgument_setMTensor(Res, tensor_B);
return LIBRARY_NO_ERROR;

}
";
Needs["CCompilerDriver`"]
lib = CreateLibrary[src, "laplacian"];
lapShutao = LibraryFunctionLoad[lib, "laplacian", {{Real, 2}}, {Real, 2}];

compare[n_] := Block[{mat = RandomReal[10, {n, n}]},
d2 = SparseArray@
N@Sum[NDSolve`FiniteDifferenceDerivative[i, {#, #} &[Range[n]],
"DifferenceOrder" -> 2][

"DifferentiationMatrix"], {i, {{2, 0}, {0, 2}}}];
{AbsoluteTiming[Array[laplacian[mat] &, 10];],
If[n > 1000, {12345, 0},
AbsoluteTiming[Array[lapJM[mat] &, 10];]],
AbsoluteTiming[Array[lapxzczd[mat] &, 10];],
AbsoluteTiming[Array[lapJens[mat] &, 10];],
AbsoluteTiming[Array[lapShutao[mat] &, 10];]}[[All, 1]]]

tab = Table[{Floor[1.3^i], #} & /@ compare[Floor[1.3^i]], {i, 6, 31}];


ListLinePlot[Transpose@tab,
PlotLegends -> {"original", "JM", "xzczd", "Jens", "Shutao"},
AxesLabel -> {"Size", "Time"}]

Answer



Accodrding to your laplacian[] function, I can draw the following conclusion:


For a matrix An×n


(a1,1a1,2⋯a1,na2,1a1,1⋯a2,n⋮⋮⋱⋮an,1an,2⋯an,n)n×n


L(ai,j)⟺bi−1,j−1=ai−1,j+ai+1,j+ai,j−1+ai,j+1−4⋅ai,j


where, the bi,j is the element of matrix B(n−2)×(n−2), and i=2,⋯,n−1,j=2,⋯,n−1


Here, I will give a C solution with the help of LibraryLink wrapper.



src = "
#include \"WolframLibrary.h\"

DLLEXPORT int laplacian(WolframLibraryData libData, mint Argc, MArgument *Args, MArgument Res) {
MTensor tensor_A, tensor_B;
mreal *a, *b;
mint const *A_dims;
mint n;
int err;
mint dims[2];

mint i, j, idx;
tensor_A = MArgument_getMTensor(Args[0]);
a = libData->MTensor_getRealData(tensor_A);
A_dims = libData->MTensor_getDimensions(tensor_A);
n = A_dims[0];
dims[0] = dims[1] = n - 2;
err = libData->MTensor_new(MType_Real, 2, dims, &tensor_B);
b = libData->MTensor_getRealData(tensor_B);
for (i = 1; i <= n - 2; i++) {
for (j = 1; j <= n - 2; j++) {

idx = n*i + j;
b[idx+1-2*i-n] = a[idx-n] + a[idx-1] + a[idx+n] + a[idx+1] - 4*a[idx];
}
}
MArgument_setMTensor(Res, tensor_B);
return LIBRARY_NO_ERROR;
}
";




Needs["CCompilerDriver`"]
lib = CreateLibrary[src, "laplacian"];

lapShutao = LibraryFunctionLoad[lib, "laplacian", {{Real, 2}}, {Real, 2}]

OK, let's test it


mat = RandomReal[10, {1000, 1000}];
lapShutao[mat]; // AbsoluteTiming

enter image description here



Remark:


In my laptop that with 4GB RAM, I discovered that when n=15000, the lapShutao[] and cLa[] will lead to system halted.


Update


For the following code:


b[(n-2)*(i-1)+j-1] = a[n*(i-1)+j] + a[n*i+j-1] + a[n*(i+1)+j] + a[n*i+j+1] - 4*a[n*i+j];

let idx = n*i+j, then the above code could be refactored as below:


b[idx+1-2*i-n] = a[idx-n] + a[idx-1] + a[idx+n] + a[idx+1] - 4*a[idx];

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...