Skip to main content

list manipulation - Efficient discrete Laplacian of a matrix


I would like to compute the discrete Laplacian of a real matrix (numeric values and full), using any method and targetting efficiency (I will call the Laplacian dozens of thousands of time).


I naively defined the following function:



laplacian[Z_] := Block[{Zcenter, Ztop, Zleft, Zbottom, Zright},
Zcenter = Z[[2 ;; -2, 2 ;; -2]];
Ztop = Z[[;; -3, 2 ;; -2]];
Zleft = Z[[2 ;; -2, ;; -3]];
Zbottom = Z[[3 ;;, 2 ;; -2]];
Zright = Z[[2 ;; -2, 3 ;;]];
Ztop + Zleft + Zbottom + Zright - 4*Zcenter
]

It reduces the dimension of the input (because the Laplacian for the elements of the border of the array is not computed) but I am fine with that.



I also tried writing the function in a compiled way:


compileLaplacian = Compile[{{Z, _Real, 2}},
Module[{Zcenter = Z[[2 ;; -2, 2 ;; -2]],
Ztop = Z[[;; -3, 2 ;; -2]],
Zleft = Z[[2 ;; -2, ;; -3]],
Zbottom = Z[[3 ;;, 2 ;; -2]],
Zright = Z[[2 ;; -2, 3 ;;]]},
Ztop + Zleft + Zbottom + Zright - 4*Zcenter
]
]


but it returns the error



Compile::cpintlt: 3;;All at position 2 of Z[[3;;All,2;;-2]] should be either a nonzero integer or a vector of nonzero integers; evaluation will use the uncompiled function.



Can I improve my discrete Laplacian function in terms of computation time? (targeted matrices are $100\times 100$ to $10000\times 10000$)




Edit The following graph summarizes the timings for the different proposed functions. RAM is not monitored. I'll investigate Szabolcs's suggestion using packed array to see if timing can be further reduced.


enter image description here


Full code for the image:



laplacian[Z_] := 
Block[{Zcenter, Ztop, Zleft, Zbottom, Zright},
Zcenter = Z[[2 ;; -2, 2 ;; -2]];
Ztop = Z[[;; -3, 2 ;; -2]];
Zleft = Z[[2 ;; -2, ;; -3]];
Zbottom = Z[[3 ;;, 2 ;; -2]];
Zright = Z[[2 ;; -2, 3 ;;]];
Ztop + Zleft + Zbottom + Zright - 4*Zcenter]
lapJM[Z_] :=
Differences[ArrayPad[Z, {{0, 0}, {-1, -1}}], 2] +

Differences[ArrayPad[Z, {{-1, -1}, {0, 0}}], {0, 2}]

<< CompiledFunctionTools`
Compiler`$CCompilerOptions = {"SystemCompileOptions" -> "-fPIC -Ofast -march=native"};

lapxzczd =
Hold@Compile[{{z, _Real, 2}},
Module[{d1, d2}, {d1, d2} = Dimensions@z;
Table[
z[[i + 1, j]] + z[[i, j + 1]] + z[[i - 1, j]] +

z[[i, j - 1]] - 4 z[[i, j]],
{i, 2, d1 - 1}, {j, 2, d2 - 1}]
],
CompilationTarget -> "C",
RuntimeOptions -> "Speed"] /. Part -> Compile`GetElement // ReleaseHold;

d2 = SparseArray@
N@Sum[NDSolve`FiniteDifferenceDerivative[i, {#, #} &[Range[1000]],
"DifferenceOrder" -> 2][
"DifferentiationMatrix"], {i, {{2, 0}, {0, 2}}}];


lapJens[values_] := Partition[d2.Flatten[values], Length[values]]

src = "
#include \"WolframLibrary.h\"

DLLEXPORT int laplacian(WolframLibraryData libData, mint Argc, \
MArgument *Args, MArgument Res) {
MTensor tensor_A, tensor_B;
mreal *a, *b;

mint const *A_dims;
mint n;
int err;
mint dims[2];
mint i, j;
tensor_A = MArgument_getMTensor(Args[0]);
a = libData->MTensor_getRealData(tensor_A);
A_dims = libData->MTensor_getDimensions(tensor_A);
n = A_dims[0];
dims[0] = dims[1] = n - 2;

err = libData->MTensor_new(MType_Real, 2, dims, &tensor_B);
b = libData->MTensor_getRealData(tensor_B);
for (i = 1; i <= n - 2; i++) {
for (j = 1; j <= n - 2; j++) {
b[(n-2)*(i-1)+j-1] = a[n*(i-1)+j] + a[n*i+j-1] + \
a[n*(i+1)+j] + a[n*i+j+1]- 4*a[n*i+j];
}
}
MArgument_setMTensor(Res, tensor_B);
return LIBRARY_NO_ERROR;

}
";
Needs["CCompilerDriver`"]
lib = CreateLibrary[src, "laplacian"];
lapShutao = LibraryFunctionLoad[lib, "laplacian", {{Real, 2}}, {Real, 2}];

compare[n_] := Block[{mat = RandomReal[10, {n, n}]},
d2 = SparseArray@
N@Sum[NDSolve`FiniteDifferenceDerivative[i, {#, #} &[Range[n]],
"DifferenceOrder" -> 2][

"DifferentiationMatrix"], {i, {{2, 0}, {0, 2}}}];
{AbsoluteTiming[Array[laplacian[mat] &, 10];],
If[n > 1000, {12345, 0},
AbsoluteTiming[Array[lapJM[mat] &, 10];]],
AbsoluteTiming[Array[lapxzczd[mat] &, 10];],
AbsoluteTiming[Array[lapJens[mat] &, 10];],
AbsoluteTiming[Array[lapShutao[mat] &, 10];]}[[All, 1]]]

tab = Table[{Floor[1.3^i], #} & /@ compare[Floor[1.3^i]], {i, 6, 31}];


ListLinePlot[Transpose@tab,
PlotLegends -> {"original", "JM", "xzczd", "Jens", "Shutao"},
AxesLabel -> {"Size", "Time"}]

Answer



Accodrding to your laplacian[] function, I can draw the following conclusion:


For a matrix $A_{n\times n}$


$$ \left( \begin{array}{cccc} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{1,1} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \\ \end{array} \right)_{n \times n} $$


$$\mathcal{L}(a_{i,j}) \Longleftrightarrow b_{i-1,j-1}=a_{i-1,j}+a_{i+1,j}+a_{i,j-1}+a_{i,j+1}-4 \cdot a_{i,j}$$


where, the $b_{i,j}$ is the element of matrix $B_{(n-2)\times(n-2)}$, and $i=2,\cdots ,n-1, \quad j=2,\cdots,n-1$


Here, I will give a C solution with the help of LibraryLink wrapper.



src = "
#include \"WolframLibrary.h\"

DLLEXPORT int laplacian(WolframLibraryData libData, mint Argc, MArgument *Args, MArgument Res) {
MTensor tensor_A, tensor_B;
mreal *a, *b;
mint const *A_dims;
mint n;
int err;
mint dims[2];

mint i, j, idx;
tensor_A = MArgument_getMTensor(Args[0]);
a = libData->MTensor_getRealData(tensor_A);
A_dims = libData->MTensor_getDimensions(tensor_A);
n = A_dims[0];
dims[0] = dims[1] = n - 2;
err = libData->MTensor_new(MType_Real, 2, dims, &tensor_B);
b = libData->MTensor_getRealData(tensor_B);
for (i = 1; i <= n - 2; i++) {
for (j = 1; j <= n - 2; j++) {

idx = n*i + j;
b[idx+1-2*i-n] = a[idx-n] + a[idx-1] + a[idx+n] + a[idx+1] - 4*a[idx];
}
}
MArgument_setMTensor(Res, tensor_B);
return LIBRARY_NO_ERROR;
}
";




Needs["CCompilerDriver`"]
lib = CreateLibrary[src, "laplacian"];

lapShutao = LibraryFunctionLoad[lib, "laplacian", {{Real, 2}}, {Real, 2}]

OK, let's test it


mat = RandomReal[10, {1000, 1000}];
lapShutao[mat]; // AbsoluteTiming

enter image description here



Remark:


In my laptop that with 4GB RAM, I discovered that when $n = 15000$, the lapShutao[] and cLa[] will lead to system halted.


Update


For the following code:


b[(n-2)*(i-1)+j-1] = a[n*(i-1)+j] + a[n*i+j-1] + a[n*(i+1)+j] + a[n*i+j+1] - 4*a[n*i+j];

let idx = n*i+j, then the above code could be refactored as below:


b[idx+1-2*i-n] = a[idx-n] + a[idx-1] + a[idx+n] + a[idx+1] - 4*a[idx];

Comments

Popular posts from this blog

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...