Skip to main content

graphics - intersecting cylinders


I try to replicate the two figures of two intersecting cylinders from here.



I tried


cylinders1 = 
Graphics3D@{Specularity[White, 20], Red, EdgeForm[],
Cylinder[{{-2, 0, 0}, {2, 0, 0}}]};
cylinders2 =
Graphics3D@{Specularity[White, 40], Blue, EdgeForm[],
Cylinder[{{0, 0, -2}, {0, 0, 2}}]};
Show[{cylinders1, cylinders2}, Boxed -> False]

enter image description here



What should I do in order to get an closer to


enter image description here


(not bother with orientation)?


For the common region RegionPlot3D


RegionPlot3D[
x^2 + y^2 <= 1 && y^2 + z^2 <= 1, {x, -1, 1}, {y, -1, 1}, {z, -1, 1},
Mesh -> False, Axes -> True, Boxed -> False,
PlotStyle -> Directive[Orange, Specularity[White, 20]],
PlotPoints -> 100]


comes handy here but I don't know how to achieve the different coloring shown below.


enter image description here


Thanks.



Answer



In drawing these Steinmetz solids I tried to use as many of the coding points as I could from Paul Bourke's page where your images come from. He uses PovRay, but the code is human readable even if you can't use that program.


Module[{l = 1.75, viewpoint, cylinders1, cylinders2},
viewpoint = 1.2 {-1, -1, 1};
cylinders1 = {Specularity[White, 40], Darker@Darker@Blue, EdgeForm[],
Cylinder[{{-l/2, 0, 0}, {l/2, 0, 0}}, .4]};
cylinders2 = {Specularity[White, 20], Darker@Darker@Red, EdgeForm[],

Cylinder[{{0, -l/2, 0}, {0, l/2, 0}}, .4]};
Graphics3D[{cylinders1, cylinders2},
Lighting -> {{"Point", White, viewpoint + {0, 0, 2}}, {"Ambient",
RGBColor[0.15, 0.15, 0.15]}}, Boxed -> False,
ViewPoint -> viewpoint, Method -> {"CylinderPoints" -> 1000}]]

enter image description here


I tried to use PlotPoints as an option, but it wouldn't take, then I saw LegionMammal978's answer and took that last option off him.


Edit:


To get the second image, you can just use ParametricPlot3D, which renders much faster than RegionPlot3D



ParametricPlot3D[{
{-Sqrt[1 - z^2], -u Sqrt[1 - z^2], z},
{Sqrt[1 - z^2], -u Sqrt[1 - z^2], z},
{-u Sqrt[1 - z^2], - Sqrt[1 - z^2], z},
{-u Sqrt[1 - z^2], Sqrt[1 - z^2], z}},
{z, -1, 1}, {u, -1, 1}, Mesh -> None,
PlotStyle ->
Evaluate[{Specularity[White, 40], Darker@Darker@#,
EdgeForm[]} & /@ {Blue, Blue, Red, Red}],
Boxed -> False, Axes -> False, PlotPoints -> 100]


enter image description here


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...