Skip to main content

differential equations - Putting NDSolve into ParametricPlot


I am having issues using Manipulate to plot the (numeric) solution to an ODE for different parameter values.


I have a code that has several stages, which seem to all work when I do them one after another. This code solves a system of ODEs (for particular parameter values), then does a parametric plot of the solution. The problem is I need to put the lines together to wrap them around with Manipulate (for I can do this code again easily for different parameter values), and this is causing me a lot of pain.


My initial code is:


(*this is my ODE*)

unforced[x0_, p0_, α_:α, δ_:δ] :=

{x'[t] == p[t],
p'[t] == -α x[t] - δ p[t] + α (x[t])^3,
x[0] == x0,
p[0] == p0
}

(*Choose some parameter values*)

α = -1, δ = 1


(*Solve my ODE*)

s = NDSolve[unforced[x0 = 1, p0 = 1], {x, p}, {t, 20}]

(*Plot It*)

ParametricPlot[Evaluate[{x[t], p[t]} /. s], {t, 0, 20}]

But now I want to be able to Manipulate the parameter values α and δ. So I start putting the lines of code together... and problems happen.


ParametricPlot[Evaluate[{x[t], p[t]}/.

NDSolve[{x'[t] == p[t],
p'[t] == -α x[t] - δ p[t] + α (x[t])^3,
x[0] == 1, p[0] == 0}, {x, p}, {t, 20}]], {t, 0, 20}]

This plots an empty graph. This confuses me because it seems like all I did was substitute into my previous code. Because this doesn't work, I can't put a Manipulate around this. If it worked then I would have tried:


Manipulate[ParametricPlot[Evaluate[{x[t], p[t]} /.
NDSolve[{x'[t] == p[t],
p'[t] == -α x[t] - δ p[t] + α (x[t])^3,
x[0] == 1, p[0] == 0}, {x, p}, {t, 20}]], {t, 0, 20}],
{{α, -1, "α"}, -2, 0}, {{δ, 0, "δ"}, 0, 2}]


How do I get around this problem?




Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...