Skip to main content

plotting - Visualization of Bivariate Distributions


I know it is perfectly possible to show the bivariate probability distributions in MMA. But my question is can we show each dimension of distribution in 2D dimension while we are showing the 3D plot? The same as here:


enter image description here


How we can have the 2D histograms in the sides and 3D histogram in between?



Answer



You can also try this:



Generate yor data:


data = RandomVariate[\[ScriptD] = 
MultinormalDistribution[{0, 0}, {{1, 0.9}, {0.9, 2}}], 10^4];

To improve a little bit the final image, you might want to introduce lighting vectors:


lightSources = {
{"Directional", White,Scaled[{1, 0, 1}]},
{"Directional", White,Scaled[{1, .5, 1}]},
{"Directional", White, Scaled[{.5, 0, 1}]}
};


Create the 3D histogram


G1 = Histogram3D[data, {0.25}, "PDF", ColorFunction -> "Rainbow", 
PlotRange -> {{-4, 4}, {-4, 4}, All}, ImageSize -> Medium,
Boxed -> False, Lighting -> lightSources]

Create the individual histograms


G3 = Histogram[Transpose[data][[1]], {-4, 4, .25}, "Probability", 
ColorFunction -> Function[{height}, ColorData["Rainbow"][height]],
Axes -> False]

G4 = Histogram[Transpose[data][[2]], {-4, 4, .25}, "Probability",
ColorFunction -> Function[{height}, ColorData["Rainbow"][height]],
Axes -> False]

Show them all together:


G5 = Graphics3D[{EdgeForm[], Texture[G3], 
Polygon[{{4, 4, 0}, {-4, 4, 0}, {-4, 4, 0.2}, {4, 4, 0.2}},
VertexTextureCoordinates -> {{0, 0}, {1, 0}, {1, 1}, {0, 1}}]},
Axes -> False, Boxed -> False];
G6 = Graphics3D[{EdgeForm[], Texture[G4],

Polygon[{{-4, 4, 0}, {-4, -4, 0}, {-4, -4, 0.2}, {-4, 4, 0.2}},
VertexTextureCoordinates -> {{0, 0}, {1, 0}, {1, 1}, {0, 1}}]},
Axes -> False, Boxed -> False];
Show[G1, G5, G6]

enter image description here


EDITED


If you want a strict 2D representation of the data you can try this:


DH = DensityHistogram[data, {-4, 4, .25}, ColorFunction -> "Rainbow", Frame -> False];
GraphicsGrid[{{G3,}, {DH, Rotate[G4, -.5 Pi]}}]


enter image description here


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...