Skip to main content

differential equations - Extending NDSolve beyond a singularity


The tan function satisfies the following IVP:


y′=1+y2,y(0)=0


and has simple poles at the points x=Ï€/2+Ï€n for integer n.


When trying to get tan via numerical integration, the command


NDSolve[{y'[x]==y[x]^2+1,y[0]==0},y[x],{x,-10,10}]

gives a solution which is defined only for x∈(−π/2,π/2). Is there a way to extend the solution beyond the poles x=±π/2? What about singularities in the general case?


Thank you!




Answer



We can treat the variable y as an element [y1:y2] of the projective line. In code, this means replacing y[x] by y1[x]/y2[x]. For an IVP y′=f(x,y), y(x0)=y0, we translate the initial condition as y1(x0)=y0, y2(x0)=1. Since the substitution yields an equation in two variables y1, y2, y′1y2−y1y′2=y22f(x,y1/y2),

we need another equation. So to get a unique solution, we impose the condition in code as


y1[x]^2 + y2[x]^2 == y0^2 + 1

Since this condition is satisfied initially, NDSolve will use it in conjunction with the ODE to determine y1[x] and y2[x] at each step. We can use this condition as it is and solve the system as a differential-algebraic equation (DAE); or we can differentiate it and solve the system as an ODE. The important difference is that the methods and precision available for DAEs are limited.


eqn = y'[x] == 1 + y[x]^2;
blowup = {y -> (y1[#]/y2[#] &)};

newfn = eqn /. blowup /. Equal -> Subtract // Together // Numerator;


newDAE = {newfn == 0, y1[x]^2 + y2[x]^2 == y0^2 + 1};
newODE = {newfn == 0, D[y1[x]^2 + y2[x]^2 == y0^2 + 1, x]};

Block[{x0 = 0, y0 = 0},
sol = NDSolve[{newDAE, y1[x0] == y0, y2[x0] == 1}, {y1, y2}, {x, 0, 10}]
];

Block[{x0 = 0, y0 = 0},
sol = NDSolve[{newODE, y1[x0] == y0, y2[x0] == 1}, {y1, y2}, {x, 0, 10}]
];


Both solutions yield the same plots:


Plot[y[x] /. blowup /. First@sol // Evaluate, {x, 0, 10}]

Mathematica graphics


Compare by overlaying the graph of tangent, the exact solution in this example:


Plot[{y[x] /. blowup /. First@sol, Tan[x]} // Evaluate, {x, 0, 10}]

Mathematica graphics


Update: Another view of what is happening.



A standard model of the projective line [y1:y2] is a unit-diameter circle tangent to an axis. The corresponding affine line y is given by y2=1. Here we project the solution in terms of {y1[x], y2[x]} onto the desired solution y[x] (for x running from 0 to 10).



enter image description here
The projection from the circle model of the projective line onto the affine line y2 == 1. (The cylinder is the product of the interval 0 <= x <= 10 and the projective line or circle.)


cplot2 = ContourPlot3D[y1^2 + y2^2 == y2,
{x, 0, 10}, {y1, -1.05, 1.05}, {y2, -0.05, 1.05},
ContourStyle -> Opacity[0.3], Mesh -> None];
base = Show[
ParametricPlot3D[
Evaluate[{x, ( y1[x] y2[x])/(y1[x]^2 + y2[x]^2), y2[x]^2/(

y1[x]^2 + y2[x]^2)} /. First@sol], {x, 0, 10}],
ParametricPlot3D[
Evaluate[{x, y[x] /. blowup, 1} /. First@sol], {x, 0, 10},
PlotStyle -> ColorData[97, 3], Exclusions -> Cos[x] == 0],
(*cplot1,*)cplot2,
PlotRange -> {{0, 10}, {-2, 2}, {-0.1, 3.05}},
AxesLabel -> {x, y1, y2}];
(* * * * *)
Manipulate[
Show[

base,
Graphics3D[{
Gray,
Table[InfiniteLine[{{0, y, 1}, {10, y, 1}}], {y, -2, 2}],
Table[
InfiniteLine[{{x0, -1, 1}, {x0, 1, 1}}], {x0, 0, 10, Pi/2}],
Red, Thickness[Medium],
Line[{{0, 0, 0}, {10, 0, 0}}],
InfiniteLine[{{x, 0, 0}, {x, y[x] /. blowup /. First@sol, 1}}],
PointSize[Large],

Point[{{x, 0, 0}, {x, y[x], 1}, {x, ( y1[x] y2[x])/(
y1[x]^2 + y2[x]^2), y2[x]^2/(y1[x]^2 + y2[x]^2)}} /.
blowup /. First@sol]
}]
],
{x, 0, 10}
]

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...