Skip to main content

mathematical optimization - Reordering numerically calculated eigenvalues assuming smooth dependence on a parameter


As was discussed in a different question here on SE (link) if you compute eigenvalues numerically of a matrix which depends on a parameter y, the resulting plot of the eigenvalues will yield non-smooth plots. Assuming that I know that my eigenvalues will transform smoothly under the change of y I would like to reorder them, so that when I plot them the color coding is correct.


Secondly I would also like to apply the reordering to the eigenvectors as I would like to have a look at how they transform under changes of y, too.


In this link george2079 does already partially answer my question by applying a minimization procedure which punishes large curvature via a cost function. However, I have trouble adapting it to my situation and I am not sure if this is the best approach (so if you have a better idea feel free to post it as an answer).



My Matrix:


m = {{-0.576 Cos[y], 0, 0, 0. + 0.06 I, 0, 0.369858, 0, 0, 0,    0, -0.0906385, 0, 0, -0.265868, 0.0366083, 0.0157771, -0.185737,    0.0349767, 0.0435434, -0.276945, (0.288 - 0.498831 I) Sin[y],    0. - 0.03 I, 0.03, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0}, {0, -0.576 Cos[y], 0. - 0.03 I, 0, 0, 0, -0.170921, 0, 0, 0, 0,    0.234664, 0.234164, 0, 0, -0.185737, 0.205344, -0.239136, -0.249447,    0.143353, 0. + 0.03 I, (0.288 - 0.498831 I) Sin[y], 0, -0.03,    0.0519615, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0,    0. + 0.03 I, -0.576 Cos[y], 0, 0, 0, 0, 0.369858, 0, 0, 0,    0.234164, -0.0357261, 0, 0, 0.0349767, -0.239136, -0.0707859,    0.185737, 0.248295, -0.03, 0, (0.288 - 0.498831 I) Sin[y],    0. - 0.03 I, 0. - 0.0519615 I, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0}, {0. - 0.06 I, 0, 0, -0.576 Cos[y], 0, 0, 0,    0, -0.244138, -0.0422717, -0.265868, 0, 0, 0.216359, 0.0211358,    0.0435434, -0.249447, 0.185737, 0.0660567, 0.159894, 0, 0.03,    0. + 0.03 I, (0.288 - 0.498831 I) Sin[y], 0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, -0.576 Cos[y], 0, 0,    0, -0.0422717, -0.195326, 0.0366083, 0, 0,    0.0211358, -0.195326, -0.276945, 0.143353, 0.248295, 0.159894,    0.293945, 0, -0.0519615, 0. + 0.0519615 I,    0, (0.288 - 0.498831 I) Sin[y], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0}, {0.369858, 0, 0, 0, 0, -0.576 Cos[y], 0, 0, 0. + 0.06 I,    0, -0.0906385, 0, 0, 0.265868, -0.0366083, 0.0157771, 0.185737,    0.0349767, -0.0435434, 0.276945, 0, 0, 0, 0,    0, (0.288 + 0.498831 I) Sin[y], 0. - 0.03 I, 0.03, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0}, {0, -0.170921, 0, 0, 0, 0, -0.576 Cos[y],    0. - 0.03 I, 0, 0, 0, 0.234664, -0.234164, 0, 0, 0.185737, 0.205344,    0.239136, -0.249447, 0.143353, 0, 0, 0, 0, 0,    0. + 0.03 I, (0.288 + 0.498831 I) Sin[y], 0, -0.03, 0.0519615, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0.369858, 0, 0, 0,    0. + 0.03 I, -0.576 Cos[y], 0, 0, 0, -0.234164, -0.0357261, 0, 0,    0.0349767, 0.239136, -0.0707859, -0.185737, -0.248295, 0, 0, 0, 0,    0, -0.03, 0, (0.288 + 0.498831 I) Sin[y], 0. - 0.03 I,    0. - 0.0519615 I, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0,    0, -0.244138, -0.0422717, 0. - 0.06 I, 0, 0, -0.576 Cos[y], 0,    0.265868, 0, 0, 0.216359,    0.0211358, -0.0435434, -0.249447, -0.185737, 0.0660567, 0.159894, 0,    0, 0, 0, 0, 0, 0.03, 0. + 0.03 I, (0.288 + 0.498831 I) Sin[y], 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, -0.0422717, -0.195326, 0,    0, 0, 0, -0.576 Cos[y], -0.0366083, 0, 0, 0.0211358, -0.195326,    0.276945, 0.143353, -0.248295, 0.159894, 0.293945, 0, 0, 0, 0, 0,    0, -0.0519615, 0. + 0.0519615 I, 0, (0.288 + 0.498831 I) Sin[y], 0,    0, 0, 0, 0, 0, 0, 0, 0, 0}, {-0.0906385, 0, 0, -0.265868,    0.0366083, -0.0906385, 0, 0, 0.265868, -0.0366083, -0.576 Cos[y], 0,    0, 0. + 0.06 I, 0, 0.0911964, 0, 0.356683, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, -0.576 Sin[y], 0. - 0.03 I, 0.03, 0, 0, 0, 0, 0, 0,    0}, {0, 0.234664, 0.234164, 0, 0, 0, 0.234664, -0.234164, 0, 0,    0, -0.576 Cos[y], 0. - 0.03 I, 0, 0, 0, -0.208851, 0,    0.0722586, -0.286706, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0. + 0.03 I, -0.576 Sin[y], 0, -0.03, 0.0519615, 0, 0, 0, 0, 0}, {0,    0.234164, -0.0357261, 0, 0, 0, -0.234164, -0.0357261, 0, 0, 0,    0. + 0.03 I, -0.576 Cos[y], 0, 0, 0.356683, 0, 0.343409, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, -0.03, 0, -0.576 Sin[y], 0. - 0.03 I,    0. - 0.0519615 I, 0, 0, 0, 0, 0}, {-0.265868, 0, 0, 0.216359,    0.0211358, 0.265868, 0, 0, 0.216359, 0.0211358, 0. - 0.06 I, 0,    0, -0.576 Cos[y], 0, 0, 0.0722586, 0, -0.00936269, -0.319789, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03, 0. + 0.03 I, -0.576 Sin[y], 0, 0,    0, 0, 0, 0}, {0.0366083, 0, 0, 0.0211358, -0.195326, -0.0366083, 0,    0, 0.0211358, -0.195326, 0, 0, 0, 0, -0.576 Cos[y], 0, -0.286706,    0, -0.319789, 0.293945, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.0519615,    0. + 0.0519615 I, 0, -0.576 Sin[y], 0, 0, 0, 0,    0}, {0.0157771, -0.185737, 0.0349767, 0.0435434, -0.276945,    0.0157771, 0.185737, 0.0349767, -0.0435434, 0.276945, 0.0911964, 0,    0.356683, 0, 0, 1.02645, 0, 0, 0. + 0.53 I, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0. - 0.265 I, 0.265, 0, 0}, {-0.185737,    0.205344, -0.239136, -0.249447, 0.143353, 0.185737, 0.205344,    0.239136, -0.249447, 0.143353, 0, -0.208851, 0,    0.0722586, -0.286706, 0, 1.02645, 0. - 0.265 I, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0. + 0.265 I, 0, 0, -0.265,    0.458993}, {0.0349767, -0.239136, -0.0707859, 0.185737, 0.248295,    0.0349767, 0.239136, -0.0707859, -0.185737, -0.248295, 0.356683, 0,    0.343409, 0, 0, 0, 0. + 0.265 I, 1.02645, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, -0.265, 0, 0, 0. - 0.265 I,    0. - 0.458993 I}, {0.0435434, -0.249447, 0.185737, 0.0660567,    0.159894, -0.0435434, -0.249447, -0.185737, 0.0660567, 0.159894, 0,    0.0722586, 0, -0.00936269, -0.319789, 0. - 0.53 I, 0, 0, 1.02645, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.265,    0. + 0.265 I, 0, 0}, {-0.276945, 0.143353, 0.248295, 0.159894,    0.293945, 0.276945, 0.143353, -0.248295, 0.159894, 0.293945,    0, -0.286706, 0, -0.319789, 0.293945, 0, 0, 0, 0, 1.02645, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.458993, 0. + 0.458993 I,    0, 0}, {(0.288 + 0.498831 I) Sin[y], 0. - 0.03 I, -0.03, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.576 Cos[y], 0, 0,    0. - 0.06 I, 0, 0.369858, 0, 0, 0, 0, -0.0906385, 0, 0, -0.265868,    0.0366083, 0.0157771, -0.185737, 0.0349767,    0.0435434, -0.276945}, {0. + 0.03 I, (0.288 + 0.498831 I) Sin[y], 0,    0.03, -0.0519615, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0.576 Cos[y], 0. + 0.03 I, 0, 0, 0, -0.170921, 0, 0, 0, 0, 0.234664,    0.234164, 0, 0, -0.185737, 0.205344, -0.239136, -0.249447,    0.143353}, {0.03, 0, (0.288 + 0.498831 I) Sin[y], 0. - 0.03 I,    0. - 0.0519615 I, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0. - 0.03 I, 0.576 Cos[y], 0, 0, 0, 0, 0.369858, 0, 0, 0,    0.234164, -0.0357261, 0, 0, 0.0349767, -0.239136, -0.0707859,    0.185737, 0.248295}, {0, -0.03,    0. + 0.03 I, (0.288 + 0.498831 I) Sin[y], 0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0. + 0.06 I, 0, 0, 0.576 Cos[y], 0, 0, 0,    0, -0.244138, -0.0422717, -0.265868, 0, 0, 0.216359, 0.0211358,    0.0435434, -0.249447, 0.185737, 0.0660567, 0.159894}, {0, 0.0519615,    0. + 0.0519615 I, 0, (0.288 + 0.498831 I) Sin[y], 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.576 Cos[y], 0, 0,    0, -0.0422717, -0.195326, 0.0366083, 0, 0,    0.0211358, -0.195326, -0.276945, 0.143353, 0.248295, 0.159894,    0.293945}, {0, 0, 0, 0, 0, (0.288 - 0.498831 I) Sin[y],    0. - 0.03 I, -0.03, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.369858, 0,    0, 0, 0, 0.576 Cos[y], 0, 0, 0. - 0.06 I, 0, -0.0906385, 0, 0,    0.265868, -0.0366083, 0.0157771, 0.185737, 0.0349767, -0.0435434,    0.276945}, {0, 0, 0, 0, 0, 0. + 0.03 I, (0.288 - 0.498831 I) Sin[y],    0, 0.03, -0.0519615, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.170921, 0,    0, 0, 0, 0.576 Cos[y], 0. + 0.03 I, 0, 0, 0, 0.234664, -0.234164,    0, 0, 0.185737, 0.205344, 0.239136, -0.249447, 0.143353}, {0, 0, 0,    0, 0, 0.03, 0, (0.288 - 0.498831 I) Sin[y], 0. - 0.03 I,    0. - 0.0519615 I, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.369858, 0,    0, 0, 0. - 0.03 I, 0.576 Cos[y], 0, 0, 0, -0.234164, -0.0357261, 0,    0, 0.0349767, 0.239136, -0.0707859, -0.185737, -0.248295}, {0, 0, 0,    0, 0, 0, -0.03, 0. + 0.03 I, (0.288 - 0.498831 I) Sin[y], 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.244138, -0.0422717, 0. + 0.06 I,    0, 0, 0.576 Cos[y], 0, 0.265868, 0, 0, 0.216359,    0.0211358, -0.0435434, -0.249447, -0.185737, 0.0660567,    0.159894}, {0, 0, 0, 0, 0, 0, 0.0519615, 0. + 0.0519615 I,    0, (0.288 - 0.498831 I) Sin[y], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0, -0.0422717, -0.195326, 0, 0, 0, 0, 0.576 Cos[y], -0.0366083, 0,    0, 0.0211358, -0.195326, 0.276945, 0.143353, -0.248295, 0.159894,    0.293945}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.576 Sin[y],    0. - 0.03 I, -0.03, 0, 0, 0, 0, 0, 0, 0, -0.0906385, 0,    0, -0.265868, 0.0366083, -0.0906385, 0, 0, 0.265868, -0.0366083,    0.576 Cos[y], 0, 0, 0. - 0.06 I, 0, 0.0911964, 0, 0.356683, 0,    0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0. + 0.03 I, -0.576 Sin[y], 0,    0.03, -0.0519615, 0, 0, 0, 0, 0, 0, 0.234664, 0.234164, 0, 0, 0,    0.234664, -0.234164, 0, 0, 0, 0.576 Cos[y], 0. + 0.03 I, 0, 0,    0, -0.208851, 0, 0.0722586, -0.286706}, {0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0.03, 0, -0.576 Sin[y], 0. - 0.03 I, 0. - 0.0519615 I, 0, 0, 0,    0, 0, 0, 0.234164, -0.0357261, 0, 0, 0, -0.234164, -0.0357261, 0, 0,    0, 0. - 0.03 I, 0.576 Cos[y], 0, 0, 0.356683, 0, 0.343409, 0,    0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.03,    0. + 0.03 I, -0.576 Sin[y], 0, 0, 0, 0, 0, 0, -0.265868, 0, 0,    0.216359, 0.0211358, 0.265868, 0, 0, 0.216359, 0.0211358,    0. + 0.06 I, 0, 0, 0.576 Cos[y], 0, 0, 0.0722586,    0, -0.00936269, -0.319789}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0.0519615, 0. + 0.0519615 I, 0, -0.576 Sin[y], 0, 0, 0, 0, 0,    0.0366083, 0, 0, 0.0211358, -0.195326, -0.0366083, 0, 0,    0.0211358, -0.195326, 0, 0, 0, 0, 0.576 Cos[y], 0, -0.286706,    0, -0.319789, 0.293945}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0. - 0.265 I, -0.265, 0, 0, 0.0157771, -0.185737, 0.0349767,    0.0435434, -0.276945, 0.0157771, 0.185737, 0.0349767, -0.0435434,    0.276945, 0.0911964, 0, 0.356683, 0, 0, 1.02645, 0, 0, 0. - 0.53 I,    0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0. + 0.265 I, 0,    0, 0.265, -0.458993, -0.185737, 0.205344, -0.239136, -0.249447,    0.143353, 0.185737, 0.205344, 0.239136, -0.249447, 0.143353,    0, -0.208851, 0, 0.0722586, -0.286706, 0, 1.02645, 0. + 0.265 I, 0,    0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.265, 0, 0,    0. - 0.265 I, 0. - 0.458993 I, 0.0349767, -0.239136, -0.0707859,    0.185737, 0.248295, 0.0349767,    0.239136, -0.0707859, -0.185737, -0.248295, 0.356683, 0, 0.343409,    0, 0, 0, 0. - 0.265 I, 1.02645, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0,    0, 0, 0, 0, 0, 0, 0, -0.265, 0. + 0.265 I, 0, 0,    0.0435434, -0.249447, 0.185737, 0.0660567,    0.159894, -0.0435434, -0.249447, -0.185737, 0.0660567, 0.159894, 0,    0.0722586, 0, -0.00936269, -0.319789, 0. + 0.53 I, 0, 0, 1.02645,    0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.458993,    0. + 0.458993 I, 0, 0, -0.276945, 0.143353, 0.248295, 0.159894,    0.293945, 0.276945, 0.143353, -0.248295, 0.159894, 0.293945,    0, -0.286706, 0, -0.319789, 0.293945, 0, 0, 0, 0, 1.02645}}
(*empty line*)

ListPlot[Transpose@Table[Eigenvalues[m], {y, -Pi, Pi, .01}]]

enter image description here


Original code (m is a 3x3 matrix):


alle = Table[Eigenvalues[m], {y, -Pi, Pi, .01}];
original = Show[

MapIndexed[ListPlot[Flatten[Take[alle, All, {#}] , 2],
Joined -> True, PlotRange -> All,
PlotStyle -> Hue[First@#2/3]] &, Range[3]]];
v = Table[V[i], {i, Length[alle]}];
SetOptions[NMinimize, MaxIterations -> 500];
Do[
alle = MapThread[ Prepend[ Drop[ #2 , {#1}] , #2[[#1]] ] &,
{ (v /. Last@Minimize[{Total[((#[[1]] + #[[3]] - 2 #[[2]])^2 & /@
Partition[ Indexed @@@ Transpose[{alle, v}], 3, 1, {1, 3}, {}])],
Table[k <= V[i] <= 3, {i, Length[alle]}]}, v, Integers]) ,

alle}] , {k, 2}];
Show[original,
ListPlot[Flatten@Take[alle, All, {#}], Joined -> True,
PlotStyle -> {Thick, Black, Dashed}] & /@ Range[3]]

My adoption (m is my matrix):


alle = Table[Eigenvalues[m], {y, -Pi, Pi, .01}];
original = Show[
MapIndexed[ListPlot[Flatten[Take[alle, All, {#}] , 2],
Joined -> True, PlotRange -> All,

PlotStyle -> Hue[First@#2/40]] &, Range[40]]];
v = Table[V[i], {i, Length[alle]}];
SetOptions[NMinimize, MaxIterations -> 500];
Do[
alle = MapThread[ Prepend[ Drop[ #2 , {#1}] , #2[[#1]] ] &,
{ (v /. Last@Minimize[{Total[((#[[1]] + #[[3]] - 2 #[[2]])^2 & /@
Partition[ Indexed @@@ Transpose[{alle, v}], 40, 1, {1, 40}, {}])],
Table[k <= V[i] <= 40, {i, Length[alle]}]}, v, Integers]) ,
alle}] , {k, 40-1}];
Show[original,

ListPlot[Flatten@Take[alle, All, {#}], Joined -> True,
PlotStyle -> {Thick, Black, Dashed}] & /@ Range[40]]

My Questions:




  1. Can someone explain george2079's code, because I still have trouble to figure out exactly what is going on?




    • What is the v table for?





    • I understand the idea of the cost function but how is it used to reorder the eigenvalues?





  2. Is my adoption of the 3x3 example correct for my 40x40 example?

  3. How do I add my eigenvectors so that I still know at the end which eigenvectors belongs to which eigenvalue?

  4. Does the above code work on your system and if it does how long does the job take to finish?

  5. If it does not finish within reasonable time (for me that is < 40min): Is there a way to increase performance?



Note If you have a better idea how to solve my problem, this is of course also great. I am not bound in any way to use the above code.



Answer



Apologies for the procedural approach, but this seems to work. Trace out one line at a time, using Interpolation to extrapolate where the next point is likely to be:


c = {};
frames = {};
xvals = Pi Range[-1, 1, 1/100];
alle = Table[({y, #} & /@ Eigenvalues[m]), {y, xvals}] ;
colors = Table[Hue[RandomReal[{0, 2/3}]], {Length@m}];
Clear[g];

Monitor[
Do[
line =
First@Position[alle, First@SortBy[#, #[[2]] &]] & /@ alle[[;; 2]];
MapIndexed[(nextx = #;
proj = {nextx,
Quiet[ Interpolation[alle[[Sequence @@ #]] & /@ line]@nextx ]};
AppendTo[line, Position[alle, First@Nearest[alle[[First@#2 + 2]],
proj]][[1]]] ) &, xvals[[3 ;;]]];
AppendTo[c, alle[[Sequence @@ #]] & /@ line];

alle = Delete[alle, line];
AppendTo[frames,
g = Show[ {
If[Length@First@alle > 0, ListPlot[Flatten[alle, 1]],
Graphics[]] ,
Graphics[
MapIndexed[{Thick, colors[[First@#2]], Line[#]} &, c]]},
PlotRange -> {-2, 2}, AxesOrigin -> {0, 0}]],
{nrem, Length@m, 1, -1}], g]


enter image description here


enter image description here


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...