Skip to main content

differential equations - Fitting experimental data by using ParametricNDSolveValue and NonlinearModelFit


I am a newcomer to Mathematica. Basically I just want to fit the data (enzyme kinetic data) shown below to a system of odes' by using NonlinearModelFit. The data, an 101x2 array, contains time in the first column and substrate concentration in the second. The model contains 4 species (e[t], es[t], s[t] and p[t]) and species s[t] is the one I want to fit the data to. I get the following error:



"The function value {<<1>>} is not a list of real numbers with dimensions {101} at {k1,k2,k3} = {4.,3.,1.`}". >>



Clicking on ">>" sends me to the basic NonlinearModelFit help page and I'm stuck there. The entire code is shown below. Thanks if anybody can help.


Francesco


(*some data*)
data={{0, 4.9112}, {20., 4.75011}, {40., 4.43818}, {60., 4.28744}, {80.,

3.97296}, {100., 3.86888}, {120., 3.69122}, {140., 3.59596}, {160.,
3.22247}, {180., 2.85438}, {200., 2.81939}, {220., 2.88236}, {240.,
2.49125}, {260., 2.55379}, {280., 2.33662}, {300., 2.34136}, {320.,
1.88169}, {340., 1.9444}, {360., 1.73578}, {380., 2.04545}, {400.,
1.74068}, {420., 1.70471}, {440., 1.37455}, {460., 1.35169}, {480.,
1.29391}, {500., 1.35778}, {520., 1.1509}, {540., 1.18335}, {560.,
0.846087}, {580., 0.957338}, {600., 0.855021}, {620.,
0.727364}, {640., 0.886429}, {660., 0.817111}, {680.,
0.748117}, {700., 0.569694}, {720., 0.77641}, {740.,
0.661459}, {760., 0.561378}, {780., 0.56037}, {800.,

0.500522}, {820., 0.322087}, {840., 0.44058}, {860.,
0.359604}, {880., 0.31989}, {900., 0.278633}, {920.,
0.318697}, {940., 0.150813}, {960., 0.427698}, {980.,
0.364589}, {1000., 0.292937}, {1020., 0.27481}, {1040.,
0.182754}, {1060., 0.349605}, {1080., 0.220416}, {1100.,
0.149073}, {1120., 0.343196}, {1140., 0.173815}, {1160.,
0.126286}, {1180., 0.145337}, {1200., 0.0800335}, {1220.,
0.043485}, {1240., 0.399296}, {1260., 0.303941}, {1280.,
0.161308}, {1300., -0.00255049}, {1320., 0.0296389}, {1340.,
0.0919508}, {1360.,

0.182537}, {1380., -0.0356638}, {1400., -0.140977}, {1420.,
-0.0581143}, {1440., 0.115227}, {1460., 0.116371}, {1480.,
0.118025}, {1500., 0.0556984}, {1520., 0.0831993}, {1540.,
0.0135393}, {1560., 0.143889}, {1580., -0.0817538}, {1600.,
0.0968327}, {1620., -0.0364522}, {1640., 0.0121839}, {1660.,
0.0983604}, {1680., 0.144547}, {1700., -0.0734307}, {1720.,
0.162225}, {1740., 0.100122}, {1760., 0.0253859}, {1780.,
0.0108251}, {1800., 0.00686486}, {1820., -0.00330938}, {1840.,
0.0277739}, {1860., 0.0291533}, {1880., 0.105267}, {1900.,
0.174073}, {1920., 0.0668537}, {1940., -0.00195318}, {1960.,

0.080458}, {1980., 0.0352437}, {2000., -0.0870161}};
(* Dimensions[data] {101, 2} *)

tmax = Max[data[[All, 1]]];

(* the model, k1, k2, k3 are the parameters *)

model = ParametricNDSolveValue[{e'[t] == (k2 + k3) es[t]
- k1 e[t] s[t], es'[t] == -e'[t], s'[t] == k2 es[t] - k1 e[t] s[t],
p'[t] == k3 es[t], e[0] == 0.001, s[0] == 5, es[0] == 0,

p[0] == 0}, s[t], {t, 0, tmax}, {k1, k2, k3}]

fit = NonlinearModelFit[data,model[k1, k2, k3][t], {{k1, 4.}, {k2, 3}, {k3, 1}}, t];
plotfit = Plot[model[k1, k2, k3] /. fit, {t, 0, tmax}];
plotdata = ListPlot[data, PlotStyle -> PointSize[0.02]];
Show[plotfit, plotdata]


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...