Skip to main content

programming - Combinations of multiple matching patterns


I wonder if there is any nice way to combine DownValues (or any other suitable rule-/pattern-/function -based Mathematica construct) when multiple patterns match an expression. Let me explain what I mean with a somewhat silly example:


f[x_?(Mod[#,2]==0 &&Mod[#,3]==0&)]:= "FizzBuzz"
f[x_?(Mod[#,2]==0& )]:= "Fizz"
f[x_?(Mod[#,3]==0&)]:= "Buzz"

f[x_]:=x

Range@15 //Map@f
(* {1,Fizz,Buzz,Fizz,5,FizzBuzz,7,Fizz,Buzz,Fizz,11,FizzBuzz,13,Fizz,Buzz} *)

It would be really nice if one could do away with the first DownValue of f which checks if an expression is divisible by both 2 and 3 (since this is just a combination of the PatternTests used by the two DownValues defined beneath it). In this simple case one additional DownValue might not be an issue but if one adds more and more "rules" the number of additional combinations to check increases rapidly with the number of "rules". For instance:


g[x_?(Mod[#,2]==0 &&Mod[#,3]==0 && #<10&)]:= "FizzBuzzZapp"
g[x_?(Mod[#,2]==0 &&Mod[#,3]==0&)]:= "FizzBuzz"
g[x_?(Mod[#,2]==0&& #<10& )]:= "FizzZapp"
g[x_?(Mod[#,2]==0& )]:= "Fizz"

g[x_?(Mod[#,3]==0&& #<10& )]:= "BuzzZapp"
g[x_?(Mod[#,3]==0&)]:= "Buzz"
g[x_?(#<10&)]:= "Zapp"
g[x_]:=x

Range@15 //Map@g
(* {Zapp,FizzZapp,BuzzZapp,FizzZapp,Zapp,FizzBuzzZapp,Zapp,FizzZapp,
BuzzZapp,Fizz,11,FizzBuzz,13,Fizz,Buzz} *)

Is there an elegant idiom for this?



Edit:


I actually came up with this whole question when looking at this website about fizzbuzz in too much detail and thinking that the presented FP solution was not really comprehensible anymore. As this fizzbuzz task is all about rule-replacement one might assume that a pattern-matching/rule-replacement/functional approach should give the most natural, elegant and easy to understand representation but this seems not necessarily to be true.



Answer



This does not answers my own question fully (I am still interested to see if someone might come up with an truly elegant solution based on DownValues) but I found a rule-based solution that is imho. elegant non the less.


fizzbuzz[rls_]:= With[{res=ReplaceList[#, rls]}, If[res=={}, #, StringJoin@res]]& 

fizzbuzz[{_?(Mod[#,2]==0&) -> "Fizz",
_?(Mod[#,3]==0&) -> "Buzz",
_?(#<10&) -> "Zapp"}] /@ Range@15


Looks especially neat (or obfuscated, depending on your point of view) with the escfnesc glyph for Function


enter image description here


Update: Generalization of my solution and Example


Because some confusion arose in the comments on march's answer I though I should address those in my own answer and give another example to show that this approach can be easily extended to all kinds of rules. So here is a generalization of my function fizzbuzz. It takes three arguments:



  • a list of (possibly overlapping) replacement rules

  • a function to be applied to the expressions found via pattern matching (note that the function also has access to the actual variable not only the results from pattern matching, see example below)


  • an alternative function to be applied if no pattern matched





func[rls_, f_, alt_]:= With[{res=ReplaceList[#, rls]}, If[res=={}, alt@#, f[res,#]]]&  

**Example**
regions=1/2*{{1, -Sqrt[3]/3}, {0, 2 Sqrt[3]/3}, {-1, -Sqrt[3]/3}} //Map@Disk;

f = func[{x_ /;RegionMember[regions[[1]],x]:> {1,0,0},
x_ /;RegionMember[regions[[2]],x]:> {0,1,0},
x_ /;RegionMember[regions[[3]],x]:> {0,0,1}},
{RGBColor@(Plus@@#1), Point[#2]}&, Point[#]& ]


f/@ RandomPoint[Disk[{0,0}, 2], 5000] //Graphics

output


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...