Skip to main content

probability or statistics - How can we create a histogram distribution from binning data?


HistogramDistribution takes a list of data points, creates a histogram from them, and returns this histogram in a form that can be used as a distribution.


I already have the binned data, and I do not have the original data points. How can I create a distribution object equivalent to a histogram distribution using this binning data?


Let's assume we have the binned data in the same format that HistogramList returns.


Example data: bins = N@HistogramList@RandomVariate[NormalDistribution[], 1000].



Answer




Update: We can use WeightedData to represent binned data and work with it in the usual way:


values = MovingAverage[First[bins], 2];
weights = Last[bins];

binsize = bins[[1,2]] - bins[[1,1]] (* assuming a constant bin size!! *)

distr = HistogramDistribution[WeightedData[values, weights], {binsize}]



Original answer:



HistogramDistribution creates a DataDistribution object. The format of this object is not documented, but we can attempt guessing at the object structure and construct a DataDistribution directly.


Warning: The usual caveats about spelunking and using undocumented functionality apply. There's no guarantee that this will work in every situation or in future versions. The following seems to work in version 9.


DataDistribution objects have the following format:


DataDistribution[type, data, dimension, numberOfPoints]



  • type is a string describing the type of the data distribution. For histogram distributions it is "Histogram"





  • data must have the format {pdf, binSpec} for histogram distributions (it is different for other distributions). binSpec is a list of bin boundaries, thus it must have a length one greater than the number of bins. pdf is a list of PDF values for each bin. Thus Total[Differences[binSpec] pdf] must be 1.




  • dimension is the dimension of the data. For 1D data, which we use here, it is 1.




  • numberOfPoints is the number of data points that the histogram was built from.




Starting from the example data bins, we can construct the distribution as



{binSpec, counts} = bins

dd = DataDistribution[
"Histogram", (* type *)
{counts/Differences[binSpec]/Total[counts], binSpec}, (* data *)
1, (* dimension *)
Infinity (* no. of data points *)
]

The usual functions such as Mean, Median, Variance, etc. can be used on dd.



Note: I am not sure if using Infinity for the number of data points can cause any problems.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...