Skip to main content

numerical integration - Proper use of arbitrary number of variables


So, I'm working on a project where the number of independent variables is not fixed.


Consider a problem of $N$ independent variables, $\boldsymbol{r}$.


I want to perform different things with them. Amongst them, I want to consider (multidimensional) integration, etc.


Variables definition



My first question regarding this topic, is the definition of the variables to perform algebraic manipulation. My first though was to use


variables[N_]:=Table[x[i],{i,1,N}]

However, in some situations, (e.g. with Block), I cannot use these variables as I use x1,x2,.... e.g.


Block[{x[1]=2},x[1]^2]

gives an error.


(my current naive solution is to use):


variables[N_] := Table[ToExpression["x" <> ToString[i]], {i, 1, N}];


Is there any more standard solution?


Sums, integrals


This question also holds for the problem of computing integrals for arbitrary dimensions.


How can I tell Mathematica to compute


Integrate[f[{r1,r2,...,rn}], {r1, 0, 1}, {r2, 0, g[r1]},...,{rN, 0, h[{r1,r2,...,"rN-1"}]}]

Most of the times I will be interested in numerically compute the integral, but nevertheless, how do I tell Mathematica? I tried the simple "naive"


Integrate[1, Table[{i, 0, 1}, {i, variables[3]}]]

but it gives an error.




Answer



You might use:


variables[n_, sym_String: "x"] := Unique @ Table[sym, {n}]

variables[5]

variables[5]

variables[3, "Q"]



{x1, x2, x3, x4, x5}

{x6, x7, x8, x9, x10}

{Q1, Q2, Q3}

Note the difference on the second call.


For work in Sum et al. you can leverage the fact that a plain Function evaluates its arguments:


vars = variables[7, "z"];


Sum[Multinomial @@ vars, ##] & @@ ({#, 0, 1} & /@ vars)


13700

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],