Skip to main content

gathering - Collecting lists using Reap/Sow


I have a list like {{a,x},{b,y},{c,x},{d,z},{e,y}} and would like to produce from it a list formed by collecting all top-level elements whose second components are the same into a single list. For the list above, the desired output would be { {{a,c},x}, {{b,e},y}, {d, z}}. Here x, y, and z could also be lists, if that matters. This seems like an application of Reap and Sow. But the on-line documentation of these functions is pretty poor, and the examples don't add much. Shifrin's book keeps referring to a discussion of Reap and Sow in Part II, but I can't actually find a part II. Is there a resource somewhere that I can look at to understand the ins and outs of these functions, and see some real examples of how to use them?



The simple Reap[Map[Sow[#, #[[2]]] &, r]], where r is the list above, produces almost what I want, but instead of {{a,c},x} above, it produces {{a,x},{c,x}}.


(I'm sure that someone will post a solution to my programming problem; for that I would be grateful. But I really would like to understand these functions better.)


EDIT: The code Reap[Map[Sow[#[[1]], #[[2]]] &, r], _, {#2, #1} &] // Rest does the trick. Perhaps there's a better way. In any case, my question about documentation still stands.



Answer



This question may be deemed a duplicate, as the specific operation has been addressed before (actually quite a few times as I recall). Nevertheless I shall attempt to provide a useful answer regarding Sow and Reap. First, I there are many examples of the use of these functions on this site, and I encourage you to search for them, as they will provide a broader application than is practical in a single answer.


For your given example you could write:


data = {{a, x}, {b, y}, {c, x}, {d, z}, {e, y}};

Reap[Sow @@@ data, _, {#2, #} &][[2]]



{{{a, c}, x}, {{b, e}, y}, {{d}, z}}

This doesn't quite match your desired output but it is a more consistent format.


However, you mention: "Here x, y, and z could also be lists, if that matters." Yes, it does matter, because if the second argument of Sow is a list it is not treated as a single tag but a list of tags. Therefore you need to wrap the list itself in {} to have it treated as a single tag. First an example of the failure:


x = {1, 2, 3};

Reap[Sow @@@ data, _, {#2, #} &][[2]]



{{{a, c}, 1}, {{a, c}, 2}, {{a, c}, 3}, {{b, e}, y}, {{d}, z}}

And then the correction:


Reap[Sow[#, {#2}] & @@@ data, _, {#2, #} &][[2]]


{{{a, c}, {1, 2, 3}}, {{b, e}, y}, {{d}, z}}



A few posts you should read:




Perhaps also of interest:





Version 10 update: although specifically Reap and Sow were requested I think it is worth noting that this can be done with Associations as well, e.g.:


{#2, #} & @@@ Normal @ GroupBy[data, Last -> First]


{{{a, c}, x}, {{b, e}, y}, {{d}, z}}


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],