Skip to main content

numerics - Numerical underflow for a scaled error function


I calculate a scaled error function defined as


f[x_] := Erfc[x]*Exp[x^2]

but it can not calculate f[30000.]. f[20000.] is not very small (0.0000282). I think Mathematica is supposed to switch to high precision instead of machine precision, but it does not. It says:




General::unfl: Underflow occurred in computation. >>
General::ovfl: Overflow occurred in computation. >>

How can I calculate f for large values of x? Even with N[f[30000], 50], it does not use high precision and fails.



Answer



If you have an analytic formula for f[x_] := Erfc[x]*Exp[x^2] not using Erfc[x] you could do what you expect. However it is somewhat problematic to do in this form because Erfc[x] < $MinNumber for x == 27300.


$MinNumber


1.887662394852454*10^-323228468


N[Erfc[27280.], 20]


5.680044213569341*10^-323201264

Edit


A very good approximation of your function f[x] for values x > 27280 you can get making use of these bounds ( see e.g. Erfc on Mathworld) :


enter image description here


which hold for x > 0.



Here we find values of the lower and upper bounds with relative errors for various x:


T = Table[ 
N[#, 15]& @ {2 /(Sqrt[Pi] (x + Sqrt[2 + x^2])),
2 /(Sqrt[Pi] ( x + Sqrt[x^2 + 4/Pi])),
1 - ( x + Sqrt[x^2 + 4/Pi])/(x + Sqrt[2 + x^2]),
{x, 30000 Table[10^k, {k, 0, 5}]}];

Grid[ Array[ InputField[ Dynamic[T[[#1, #2]]], FieldSize -> 13] &, {6, 3}]]

enter image description here



Therefore we propose this definition of the function f (namely the arithetic mean of its bounds for x > 27280 ) :


f[x_]/; x >= 0 := Piecewise[ { { Erfc[x]*Exp[x^2],                      x < 27280 },

{ 1 /( Sqrt[Pi] ( x + Sqrt[2 + x^2]))
+ 1 /( Sqrt[Pi] ( x + Sqrt[x^2 + 4/Pi])), x >= 27280}}
]
f[x_] /; x < 0 := 2 - f[-x]

I.e. we use the original definition of the function f for 0 < x < 27280, the approximation for x > 27280 and for x < 0 we use the known symmetry of the Erfc function, which is relevant when we'd like to calculate f[x] for x < - 27280. Now we can safely use this new definition for a much larger domain :


{f[300], f[300.], f[30000.], f[-30000.]}



{E^90000 Erfc[300], 0.0018806214974, 0.0000188063, 1.99998}

and now we can make plots of f around of the gluing point ( x = 27280.)


GraphicsRow[{ Plot[ f[x], {x, 2000, 55000}, 
Epilog -> {PointSize[0.02], Red, Point[{27280., f[27280.]}]},
PlotStyle -> Thick, AxesOrigin -> {0, 0}],
Plot[ f[x], {x, 27270, 27290},
Epilog -> {PointSize[0.02], Red, Point[{27280., f[27280.]}]},

PlotStyle -> Thick]}]

enter image description here


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

plotting - Magnifying Glass on a Plot

Although there is a trick in TEX magnifying glass but I want to know is there any function to magnifying glass on a plot with Mathematica ? For example for a function as Sin[x] and at x=Pi/6 Below, this is just a picture desired from the cited site. the image got huge unfortunately I don't know how can I change the size of an image here! Answer Insetting a magnified part of the original Plot A) by adding a new Plot of the specified range xPos = Pi/6; range = 0.2; f = Sin; xyMinMax = {{xPos - range, xPos + range}, {f[xPos] - range*GoldenRatio^-1, f[xPos] + range*GoldenRatio^-1}}; Plot[f[x], {x, 0, 5}, Epilog -> {Transparent, EdgeForm[Thick], Rectangle[Sequence @@ Transpose[xyMinMax]], Inset[Plot[f[x], {x, xPos - range, xPos + range}, Frame -> True, Axes -> False, PlotRange -> xyMinMax, ImageSize -> 270], {4., 0.5}]}, ImageSize -> 700] B) by adding a new Plot within a Circle mf = RegionMember[Disk[{xPos, f[xPos]}, {range, range/GoldenRatio}]] Show...