Skip to main content

list manipulation - Listing all monotone increasing binary digits



For n=5, I have 32 binary digits and for this there are 232 combinations. Out of this many, the interesting ones (i.e., the ones that have monotone increasing binary digits) are only about "2111". I know how these can be found very easily but I am missing Mathematica knowledge. Therefore I cannot complete my program.


First I need to seperate these 32 bits according to Pascals triangle numbers. Since n=5, these numbers are 1,5,10,10,5,1. Their sum is 32 and I separate the digits accordingly. My list is as follows:


List={

{0|00000|0000000000|0000000000|00000|0}

... those who satisfy the rule below

{1|11111|1111111111|1111111111|11111|1}}


From right to the left I start with the 5 bits and take all possible combinations:


|00000|--> 00001,00010,00011...11111

This says I have the following ones in the list


{0|00000|0000000000|0000000000|00001|1,    
0|00000|0000000000|0000000000|00010|1,
0|00000|0000000000|0000000000|00011|1,...,
0|00000|0000000000|0000000000|11111|1}

Then I go left via keeping |11111|1 as fixed. Now I have 10 digits and the following are the elements of the list



{0|00000|0000000000|0000000001|11111|1,    
0|00000|0000000000|0000000010|11111|1,
0|00000|0000000000|0000000011|11111|1,...,
0|00000|0000000000|1111111111|11111|1}

Then, I do the same thing again but fixing |1111111111|11111|1. Then the followings are the elements of the set:


{0|00000|0000000000|1111111111|11111|1,    
0|00000|0000000001|1111111111|11111|1,
0|00000|0000000010|1111111111|11111|1,...,
0|00000|1111111111|1111111111|11111|1}


Again the same thing and we are done:


{0|00001|1111111111|1111111111|11111|1,    
0|00010|1111111111|1111111111|11111|1,
0|00011|1111111111|1111111111|11111|1,...,
0|11111|1111111111|1111111111|11111|1}

So in total there are 25 numbers from the first stage, From the other two stages we have 210−1 for each and for the last stage 25−1 numbers. We also have all zeros and all ones and if I calculated correctly there are 2111 of them. I used the character "|" for separation. The final list should look like


List={{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},....,{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}}


I only have the following code part:


IntegerDigits[2, 2, 5]
{0, 0, 0, 1, 0}

IntegerDigits[2, 2, 10]
{0, 0, 0, 0, 0, 0, 0, 0, 1, 0}

Using this code in a 'for loop' I can obtain such combinations but I must concatenate these to the previous bits which are all zeros and all subsequent bits which are all 1s. This is what I don't know how to do.



Answer



One idea is to make use of Tuples:



monotoneTuples[b_, m_, e_] := Rest @ Tuples@Join[
ConstantArray[{0}, b],
ConstantArray[{0,1}, m],
ConstantArray[{1}, e]
]

monotoneTuples will create your partitioned set. For example:


Column @ monotoneTuples[5, 3, 1] //TeXForm



{0,0,0,0,0,0,0,1,1}{0,0,0,0,0,0,1,0,1}{0,0,0,0,0,0,1,1,1}{0,0,0,0,0,1,0,0,1}{0,0,0,0,0,1,0,1,1}{0,0,0,0,0,1,1,0,1}{0,0,0,0,0,1,1,1,1}



Then, you can join each of these sets:


res = Join[
monotoneTuples[31,1,0],
monotoneTuples[26,5,1],
monotoneTuples[16,10,6],
monotoneTuples[6,10,16],
monotoneTuples[1,5,26],
monotoneTuples[0,1,31]

];
res //Length


2110



Addendum


For memory reasons, it makes sense to create a list of integers instead of a list of bit vectors, especially if you will be creating a lot of them. So, an alternative is:


monotoneIntegers[list_] := With[{a = Accumulate[Prepend[0] @ Most @ Reverse @ list]},
Prepend[0][Join @@ (Range[2, 2^Reverse@list] 2^a - 1)]

]

For example, compare:


integers = monotoneIntegers[{1,3,2}]
bitvectors = IntegerDigits[%, 2, 6]


{0, 1, 2, 3, 7, 11, 15, 19, 23, 27, 31, 63}


{{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 1, 1}, {0, 0, 0, 1, 1, 1}, {0, 0, 1, 0, 1, 1}, {0, 0, 1, 1, 1, 1}, {0, 1, 0, 0, 1, 1}, {0, 1, 0, 1, 1, 1}, {0, 1, 1, 0, 1, 1}, {0, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1}}




The memory usage of the integers is much less:


ByteCount @ integers
ByteCount @ bitvectors


200


1968



and the disparity increases with more bits.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...