Skip to main content

calculus and analysis - Area of surface of revolution


I am asked to rotate the curve y=√4−x2 from x=−1 to x=1 about the x-axis and find the area of the surface. I was able to use RevolutionPlot3D to show the surface.


RevolutionPlot3D[Sqrt[4 - x^2], {x, -1, 1}, 

RevolutionAxis -> {1, 0, 0}]

enter image description here


I used calculus to find the surface area:


Integrate[2 π Sqrt[4 - x^2] Sqrt[1 + (-x/Sqrt[4 - x^2])^2], {x, -1, 1}]

Which produces the answer 8Ï€.


Here is my question. Is there some cute way of finding surface area using Mathematica; that is, something like using the Area and Volume commands, or some other commands?



Answer



f[x] == Sqrt[4 - x^2] is the distance at height x from the origin (i.e., from {0, 0} at height x) to the surface; hence, one can construct



reg = ImplicitRegion[z^2 + y^2 == Sqrt[4 - x^2]^2 && -1 <= x <= 1, {x, y, z}]

which looks like this:


DiscretizeRegion[reg]

enter image description here


and directly compute


Area[reg]



8Ï€



Numerically:


Area @ DiscretizeRegion @ reg / Pi


7.99449



in very good agreement.


In general this can be applied to any revolution surface, as due to its rotational symmetry it will always be given by an equation of the form z^2 + y^2 == f[x] (given the revolution is around the x axis).



EDIT:


To get the volume of such a barrel, consider reg2, different from reg only in that == is replaced with <=:


reg2 = ImplicitRegion[z^2 + y^2 <= Sqrt[4 - x^2]^2 && -1 <= x <= 1, {x, y, z}]

Then


Volume[reg2]


22Ï€3




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...