Skip to main content

calculus and analysis - Area of surface of revolution


I am asked to rotate the curve $y=\sqrt{4-x^2}$ from $x=-1$ to $x=1$ about the x-axis and find the area of the surface. I was able to use RevolutionPlot3D to show the surface.


RevolutionPlot3D[Sqrt[4 - x^2], {x, -1, 1}, 

RevolutionAxis -> {1, 0, 0}]

enter image description here


I used calculus to find the surface area:


Integrate[2 π Sqrt[4 - x^2] Sqrt[1 + (-x/Sqrt[4 - x^2])^2], {x, -1, 1}]

Which produces the answer $8\pi$.


Here is my question. Is there some cute way of finding surface area using Mathematica; that is, something like using the Area and Volume commands, or some other commands?



Answer



f[x] == Sqrt[4 - x^2] is the distance at height x from the origin (i.e., from {0, 0} at height x) to the surface; hence, one can construct



reg = ImplicitRegion[z^2 + y^2 == Sqrt[4 - x^2]^2 && -1 <= x <= 1, {x, y, z}]

which looks like this:


DiscretizeRegion[reg]

enter image description here


and directly compute


Area[reg]



$8\pi$



Numerically:


Area @ DiscretizeRegion @ reg / Pi


7.99449



in very good agreement.


In general this can be applied to any revolution surface, as due to its rotational symmetry it will always be given by an equation of the form z^2 + y^2 == f[x] (given the revolution is around the x axis).



EDIT:


To get the volume of such a barrel, consider reg2, different from reg only in that == is replaced with <=:


reg2 = ImplicitRegion[z^2 + y^2 <= Sqrt[4 - x^2]^2 && -1 <= x <= 1, {x, y, z}]

Then


Volume[reg2]


$\frac{22 \pi }{3}$




Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.