Skip to main content

plotting - Histogram based on pre-binned data (center of a bin given) - bin size not equal


I have the following problem. I have a pre-binned list that I want to plot. Here is a shortened example:


data:={{16.337, 0}, {18.92, 0}, {21.9105, 0.201491}, {25.374, 0.692208}, {29.3855, 1}, {34.0305, 0.849548}, {39.41, 0.512009}, {45.64, 0.240648}, {52.8545, 0.0905944}, {61.21, 0.0265148}, {70.886, 0.00539223}, {82.0915, 0.000554905}, {95.0685, 0}, {110.097, 0}, {127.501, 0}}

The first coordinate refers to the center of the bin and the second one is the count.



Typically I would use:


ListPlot[data, Joined -> True, InterpolationOrder -> 0, Filling -> Axis]

but this creates a histogram where the bins are not centered around the given numbers but rather begin there (as typically done and discussed in other question posts). Due to experimental reasons, the bins' widths increase exponentially, so I cannot just shift all the first coordinates. A possible workaround is to recalculate the beginnings of the bins separately and then feed them into the ListPlot, but I am wondering if there is a more automatic, built-in solution? Something that would work elegantly even if I have bins that have varying bin widths but I know their centers...


*the exponential binning is a result of the experimental equipment that was used (I didn't do the experiments myself, but was told that this cannot be changed). I don't understand why the machine was programmed this way, but there is nothing to do on that side. The data was normalised according to the highest column only to be able to plot relative comparisons between various experimental conditions.




Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.