Skip to main content

Mathematica: Retrieving PlotRange from Histogram


I know that one can retrieve PlotRange of a plot by using


AbsoluteOptions[plot,PlotRange]

but that won't work on Histogram. Here an example:


In[1099]:=


data = {-1.2056, -1.46192, -1.30053, -2.52879, -0.99636, -1.73904, -1.164,
-1.83398,-0.97505, -0.503256, -0.63802, -0.785963, -0.711821, -0.820439, -1.8699,
-3.9659, -1.4456, -1.67021, -1.42009, -2.5644, -1.45002, -1.27806, -1.66529,
-1.67073, -3.31102, -3.38638};
Histogram[%, PlotRange -> Automatic];
AbsoluteOptions[%, PlotRange]

When running the code I get the following message.


PlotRange::prng: Value of option PlotRange -> {{All,All},{-4.,0.}} is not All,
Full, Automatic, a positive machine number, or an appropriate list of range

specifications. >>

As I understood the documentation, PlotRange need to be of a certain format (e.g. two numbers) and {{All,All},{-4.,0.}} apparently does not fit to that format, for which reason Mathematica won't give me back the PlotRange of my histogram.


Does anybody know how I can get the PlotRange of a Histogram anyway? By the way: In the first place, it will only make sense to get hold of the second value of PlotRange (in my example: {-4.,0.}) since one can calculate the first one for instance through {0, Length[data]}.


Many thanks!


John



Answer



data = {-1.2056, -1.46192, -1.30053, -2.52879, -0.99636, -1.73904, \
-1.164, -1.83398, -0.97505, -0.503256, -0.63802, -0.785963, \
-0.711821, -0.820439, -1.8699, -3.9659, -1.4456, -1.67021, -1.42009, \

-2.5644, -1.45002, -1.27806, -1.66529, -1.67073, -3.31102, -3.38638};
hist = Histogram[data, PlotRange -> Automatic]
First[PlotRange /. Options[hist, PlotRange]]

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...