Skip to main content

list manipulation - Finding all length-n words on an alphabet that have a specified number of each letter


For example, I might want to generate all length n=6 words on the alphabet {A, B, C} that have one A, three B's and two C's. An example of such a word is: 'ABBBCC'. I'd like to generate all such words.


I've already tried generating all permutations of a particular string (like 'ABBBCC') and deleting all duplicates. This is too slow for my purposes.



Answer



Permutations is already duplicate-aware:


Permutations[{"A", "A", "B"}]


{{"A", "A", "B"}, {"A", "B", "A"}, {"B", "A", "A"}}


Perhaps you are looking for combinations of a particular length (which can then be permuted). One way to get those is this:


f[k_, {}, c__] := If[+c == k, {{c}}, {}]

f[k_, {x_, r___}, c___] := Join @@ (f[k, {r}, c, #] & /@ 0~Range~Min[x, k - +c])

Use:


f[4, {1, 3, 2}]


{{0, 2, 2}, {0, 3, 1}, {1, 1, 2}, {1, 2, 1}, {1, 3, 0}}


These represent the words of length 4 for a list with unique items repeated, 1, 3, and 2 times at most.


You can then construct the actual words from these lists, e.g.:


char = {"A", "B", "C"};

StringJoin@MapThread[ConstantArray, {char, #}] & /@ f[4, {1, 3, 2}]


{"BBCC", "BBBC", "ABCC", "ABBC", "ABBB"}


Or:


Inner[#2 ~Table~ {#} &, f[4, {1, 3, 2}], char, StringJoin]


{"BBCC", "BBBC", "ABCC", "ABBC", "ABBB"}

And with permutations:


Inner[#2 ~Table~ {#} &, f[4, {1, 3, 2}], char, Join]

Permutations /@ %



{{B,B,C,C},{B,B,B,C},{A,B,C,C},{A,B,B,C},{A,B,B,B}}

{{{B,B,C,C},{B,C,B,C},{B,C,C,B},{C,B,B,C},{C,B,C,B},{C,C,B,B}}, . . . }

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...