Skip to main content

plotting - Bifurcation diagram for Piecewise function


At the moment I am trying to create a bifurcation diagram of the discontinuous piecewise function given by following Mathematica code:


f[x] = Piecewise[{{-1, x < -1}, {1, x > 1}, {x * (1 - alfa) + alfa, 
1 >= x > alfa}, {x * (1 - alfa) - alfa, -alfa >
x >= -1}, {x * (2 - alfa), alfa >= x >= -alfa}}]

where alfa is a parameter. Here you have an appropriate manipulation plot:


Manipulate[Plot[Piecewise[{{-1, x < -1}, {1, x > 1}, {alfa + (1 - alfa) x, 
1 >= x > alfa}, {-alfa + (1 - alfa) x, -alfa > x >= -1}, {(2 - alfa) x, alfa >= x >= -alfa}}, 0], {x, -2, 2}], {alfa, 0, 1}]


Is it possible? Most of the examples found on the internet deal with continuous functions.



Answer



Here's an example of the classic logistic map:


f[x_, r_] := r x (1 - x);
ListPlot@Flatten[Table[Union[{r, #} & /@
Drop[NestList[f[#, r] &, RandomReal[], 600], 500]], {r, 2.5, 4, 0.005}], 1]

enter image description here


Now try it with your function:



f[x_, alfa_] := 
Piecewise[{{-1, x < -1}, {1, x > 1}, {x*(1 - alfa) + alfa,
1 >= x > alfa}, {x*(1 - alfa) - alfa, -alfa >
x >= -1}, {x*(2 - alfa), alfa >= x >= -alfa}}]

ListPlot@Flatten[Table[{r, #} & /@
Drop[NestList[f[#, r] &, RandomReal[], 600], 500], {r, -2, 4, 0.01}], 1]

enter image description here


What this code does it apply the function to a random number 600 times, then discard the first 500 results. We are looking for the fixed point(s) of the function for a given value of $r$. The values are then turned into points with a map (/@), collected together and plotted. (Explanation of Mathematica syntax can be found here).



Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...