Skip to main content

equation solving - How to eliminate variables when using Solve[]


In certain problems, we need to solve systems of equations and get results in terms of just selected variables. For example, how could we solve eqn==0 below for c3 and c4 expressed in terms of c1 and c2 only, without a1 or a2?


eqn = {{c1, c2}, {c1, c3}, {c1, c4}, {c2, c3}}.{a1, a2} - {5, 2, -4, -3}


We can select two equations from the system and solve them for a1 and a2, then substitute those results back in...


asoln = Solve[eqn[[{1, 2}]] == 0, {a1, a2}];
b = eqn /. asoln;
Solve[b == 0, {c3, c4}]

(* {{c3 -> 1/5 (3 c1 + 2 c2), c4 -> 1/5 (9 c1 - 4 c2)}} *)

This approach works but it requires that we find a subset of equations from which a1 and a2 can be solved for unambiguously, which might be difficult. Is it possible to make Solve[] eliminate a1 and a2 for us?



Answer



It turns out Solve[] has a feature that doesn't appear in the online documentation that I could find. A third argument can be added, a list of variables to be eliminated from the solution:



Solve[eqns == 0, {c3, c4}, {a1, a2}]

This yield the same output as above. And I have tested it on problems where solving for a1 and a2 (in order to eliminate them from the system) requires a careful choice of equation subset.


Reduce[] has an analogous third argument discussed here: Behavior of Reduce with variables as domain


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.