Skip to main content

programming - HoldFirst and inserting additional options into a Grid of Graphics


This is related to my earlier question, but is specific to an issue I have encountered with the use of the HoldFirst


First, let's create some fake data for testing purposes.



dateARList = 
With[{ar = FoldList[0.9 #1 + #2 &, 0.,
RandomReal[NormalDistribution[0, 1], 100]]},
Transpose[{ Table[DatePlus[{2000, 1, 1}, {n, "Month"}], {n, 0, 100}], ar}] ];

Now define two functions. First, the general one that doesn't assume the size of the matrix in the first argument.


Clear[testHolder, testHolder2]

Attributes[testHolder] = {HoldFirst}


testHolder[m_?MatrixQ, rest : OptionsPattern[{Graphics, Grid}]] :=

Module[{nc, nr, subrules, subargs},
{nr, nc} = Dimensions[m];
subrules = Table[Cases[HoldForm[m[[i, j]]], _Rule], {i, nr}, {j, nc}];
subargs = Table[Cases[HoldForm[m[[i, j]]], Except[_Rule]], {i, nr}, {j, nc}];
Grid[Table[
Head[m[[i, j]]] @@ Join[subargs[[i, j]], subrules[[i, j]],
{PlotLabel -> {i, j}, Joined -> True} ], {i, nr}, {j, nc}],
FilterRules[{rest}, Grid]]

]

testHolder[{{DateListPlot[dateARList, PlotStyle -> Red],
DateListPlot[dateARList, PlotStyle -> Blue]}},
Background -> Yellow, Frame -> True]

enter image description here


As you can see, the options I tried to insert into the sub-plots (Joined and PlotLabel) do not get passed to them, nor do the options for the overall Grid (Frame and Background).


Now, let's try a more specific case where the dimensions of the matrix in the first argument are known.


Attributes[testHolder2] = {HoldFirst}


testHolder2[{{l_[largs__, lopts___Rule], r_[rargs__, ropts___Rule]}},
rest : OptionsPattern[{Graphics, Grid}]] :=
Grid[{{l @@ Join[{largs}, {lopts}, {PlotLabel -> "Left", Joined -> True}],
r @@ Join[{rargs}, {ropts}, {PlotLabel -> "Right", Joined -> True}]}},
FilterRules[{rest}, Grid] ]

Now we have a better outcome - the options for the specific plots are passed to them, but the options for the Grid aren't used.


testHolder2[{{DateListPlot[dateARList, PlotStyle -> Red], 
DateListPlot[dateARList, PlotStyle -> Blue]}},

Background -> Yellow, Frame -> True]

enter image description here


I'm probably missing something, but I don't know what it is. Is HoldFirst the right way to ensure that additional options can be inserted into a function before it is evaluated? If not, what do I need to do to the evaluation sequence to get the desired result? Can I get the general (testHolder) case to work, or do I have to set things up with explicit pattern matches for the heads and arguments of the elements in the matrix, as in testHolder2?



Answer



The problem is to keep Mathematica from prematurely evaluating m while at the same time trying to extract its elements. In this approach I solve this by wrapping the elements of m with Hold


testHolder[m_?MatrixQ, rest : OptionsPattern[{Graphics, Grid}]] := 
Module[{nc, nr, mheld, subrules, subargs},
{nr, nc} = Dimensions[m];
mheld = Map[Hold, Unevaluated[m], {2}];

subrules = Table[Cases[mheld[[i, j]], _Rule, {2}], {i, nr}, {j, nc}];
subargs = Table[Cases[mheld[[i, j]], Except[_Rule], {2}], {i, nr}, {j, nc}];
Grid[Table[mheld[[i, j, 1, 0]] @@
Join[subargs[[i, j]], subrules[[i, j]], {PlotLabel -> {i, j}, Joined -> True}],
{i, nr}, {j, nc}], FilterRules[{rest}, Options[Grid]]]]

testHolder[{{DateListPlot[dateARList, PlotStyle -> Red],
DateListPlot[dateARList, PlotStyle -> Blue]}},
Background -> Yellow, Frame -> True]


Mathematica graphics


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...