Skip to main content

plotting - Finding all maxima and minima of a function


To find all (global and local) extrema of a function in R3, I have written the following.


Example function:


n = 2.;


terrain[x_, y_] := 2 (2 - x)^2 Exp[-(x^2) - (y + 1)^2] -
15 (x/5 - x^3 - y^3) Exp[-x^2 - y^2] - 1/3 Exp[-(x + 1)^2 - y^2];

fun = terrain[x, y];

plot = Plot3D[fun, {x, -n, n}, {y, -n, n}, PlotRange -> All,
ColorFunction -> "DarkTerrain", Mesh -> False,
PlotStyle -> Opacity@0.7]

plot of terrain function



One can observe 3 maxima and 3 minima.


NMaximize[fun, {x, y}]


{6.4547, {x -> -0.3593, y -> -0.5519}}

And


FindMaximum[fun, {x, y}]



{6.1972, {x -> -0.0529, y -> 1.2130}}

returns two of the maxima, but misses the third. My idea then was to map NMaximizeover "sufficient sectors" of the function:


 p = Flatten /@ Tuples[Partition[Range[-n, n], 2, 1], 2]


{{-2., -1., -2., -1.}, {-2., -1., -1., 0.}, ... , {1., 2., 1., 2.}}

(This algorithm was kindly provided by Kuba)


The next steps are:



max1 = NMaximize[{fun, p[[#, 1]] <= x <= p[[#, 2]], p[[#, 3]] <= y <= p[[#, 4]]},
{x, y}] & /@ Range@Length@p;
max2 = Chop@Partition[Cases[max1, _Real, Infinity], 3];

The result contains wrong points at the edges of the sectors, which can be deleted with


filter = # || (# /. b -> c) &[Or @@ MapThread[Equal,
{Table[b, {n*2 + 1}], Range[-n, n]}]]


b == -2. || b == -1. || b == 0. || b == 1. || b == 2. || c == -2. ||  

c == -1. || c == 0. || c == 1. || c == 2.

max3 = DeleteCases[max2, {_, b_, c_} /; Evaluate@filter]


{{6.45471, -0.359311, -0.551929}, {6.19724, -0.0529807, 1.21301},
{5.4426, 1.26211, -0.0152309}}

which now gives us the three maxima.


maxpoints = Graphics3D[{PointSize@0.05, Point /@ RotateLeft /@ max3}]


Repeating max1 through max3 with NMinimize finally gives this image:


density plot with extrema


Summing - up:


extrema[foo_, maxmin_, color_] :=
Module[{res},
res = maxmin[{foo, p[[#, 1]] <= x <= p[[#, 2]],
p[[#, 3]] <= y <= p[[#, 4]]}, {x, y}] & /@ Range@Length@p;
res = Chop@Partition[Cases[res, _Real, Infinity], 3];
res = DeleteCases[res, {a_, b_, c_} /; Evaluate@filter];

Graphics3D[{color, PointSize@0.05, Point /@ RotateLeft /@ res}]]

Show[plot, extrema[fun, NMaximize, Black],
extrema[fun, NMinimize, Red], ViewPoint -> {0, 0, Infinity}]

Although my approach works, it is pretty slow (more than 2 seconds to find the extrema); and, having found it only by trial and error, I am not sure if this solution is general enough.


I would welcome any comments on how to improve this.



Answer



Clear["Global`*"]
n = 2.;

terrain[x_, y_] := 2 (2 - x)^2 Exp[-(x^2) - (y + 1)^2] -
15 (x/5 - x^3 - y^3) Exp[-x^2 - y^2] - 1/3 Exp[-(x + 1)^2 - y^2];
sol[x0_, y0_] := {x, y} /. FindRoot[
Evaluate@{D[terrain[x, y], x] == 0, D[terrain[x, y], y] == 0}, {x,x0}, {y, y0}];
d = 0.5;
data = Table[sol[x0, y0], {x0, -n, n, d}, {y0, -n, n, d}] // Flatten[#, 1] & //
Select[#, Function[num, Max@Abs@num < n]] & //
DeleteDuplicates@Round[#, 10.^-6] & // Quiet;
secx[x_, y_] := Evaluate[D[terrain[x, y], {x, 2}]];
secy[x_, y_] := Evaluate[D[terrain[x, y], {y, 2}]]

secxy[x_, y_] := Evaluate[D[terrain[x, y], {x, 1}, {y, 1}]]
delta[x_, y_] := secx[x, y] secy[x, y] - secxy[x, y]^2
min = Select[data, delta @@ # > 0 && secx @@ # > 0 && secy @@ # > 0 &];
max = Select[data, delta @@ # > 0 && secx @@ # < 0 && secy @@ # < 0 &];
ContourPlot[terrain[x, y], {x, -n, n}, {y, -n, n}, Contours -> 20,
PlotLegends -> Automatic, ImageSize -> 300,
Epilog -> {Blue, PointSize[0.03], Point[min], Red, Point[max]}]

contour plot with critical points


NSolve can not solve your functions, so I can only use FindRoot to find the maxima and minima.



Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...