Skip to main content

plotting - Labeling backplanes in a 3D plot using "enclosed numbers" (i.e. ①, ② ...)


When we use ListPlot3D or Plot3D in Mathematica, a box is generated to contain the plot, as shown below. In the drawings below, I intentionally did not draw any plot in the box for the sake of clarity and generality; however in my problem I am using ListPlot3D.


Empty box


I show three axes as they would be generated by e.g. Plot3D[f[x, y], {x, 0, 2}, {y, 0, 3}]].


I would like to draw enclosed numbers on the faces of this box at the following coordinates:


① -> {1.5,   0,  0}
② -> {2.0, 1.5, 0}
③ -> {1.0, 3.0, 0}

④ -> { 0, 1.5, 0}
⑤ -> {1.0, 1.5, -1}

Here is a rough approximation of what I would like the end result to look like:


box with axes and numbers



Answer



Clear[circle]
circle[n_Integer /; 1 <= n <= 10] :=
Style[FromCharacterCode[9311 + n], FontFamily -> "Arial Unicode MS"]
circle[n_Integer /; 1 <= n <= 10, size_Integer?(# > 0 &)] :=

Style[FromCharacterCode[9311 + n], size, FontFamily -> "Arial Unicode MS"]

Show[
Plot3D[f[x, y],
{x, 0, 2}, {y, 0, 3},
ViewAngle -> 0.50, ViewPoint -> {2, -2.5, 0.7}
],
Graphics3D[{
Black,
Text[circle[1, 24], {1.5, 0, 0}],

Text[circle[2, 24], {2, 1.5, 0}],
Lighter@Gray,
Text[circle[3, 24], {1, 3, 0}],
Gray,
Text[circle[4, 24], {0, 1.5, 0}],
Style[Text[circle[5, 24], {1, 1.5, -1}], FontSlant -> Italic]
}]
]

Mathematica graphics



Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...