Skip to main content

bugs - Numerical Functions Compatible with Regions Fail with MeshRegions and BoundaryMeshRegions


Bug introduced in 10.0.0 and fixed in 10.0.2




Given a MeshRegion:



region = DelaunayMesh[RandomReal[1, {50, 3}]]

Mathematica graphics


We can numerically Integrate over it easily:


NIntegrate[x^2 y^2 z^2, {x, y, z} ∈ region]


0.0169908561



We can also Integrate over its boundary:



NIntegrate[x^2 y^2 z^2, {x, y, z} ∈ RegionBoundary@region]


0.151404597



if you replace DelaunayMesh with ConvexHullMesh, which yields a BoundaryMeshRegion, the same process works fine. This does not come as a surprise as the documentation for NIntegrate suggests that integrating over regions in this way is possible.


Now we turn our attention to NArgMin. We can mimic the built-in RegionNearest as follows:


dist[x_?VectorQ, y_?VectorQ] /; Length[x] == Length[y] := Sqrt @ Total[(x - y)^2]   

regN[region_, point_] := NArgMin[{dist[point, x], x ∈ region}, x]


We can use it as follows:


regN[Disk[], {2, 3}]


{0.55470039, 0.832050166}



regN[Sphere[], {2, 3, 4}]



{0.371392166, 0.557086686, 0.742780105}



Note that Disk[] and Sphere[] are Regions. Let's try our MeshRegion from above:


regN[region, {2, 3, 4}]

Mathematica graphics


So, it looks like while NIntegrate works fine with MeshRegion and BoundaryMeshRegion objects, other functions (NArgMin, NArgMax, NMinValue, NMaxValue, NMinimize, NMaximize etc.) that claim to work over regions fail for both. Is this an omission in documentation or implementation, or am I totally missing something here?



Answer



This has been confirmed by Wolfram Technology Group as a bug.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...