Skip to main content

linear algebra - Generating a vector of dummy variables


So I'm the situation of needing analytical solutions to a family of equations of the form Ax=b, where A is an nxn matrix. I've written a function that does what I want, but I'm currently using a bit of a hack to generate arbitrary (dummy) variable names for the n-vector 'x' :


Map[Clear, Table["x" <> ToString[j], {j, n}]];
x = ToExpression[Table["x" <> ToString[j], {j, n}]];

Can anyone suggest a more elegant way of accomplishing this task?



Answer




You have several possibilities for this. The probably two easiest methods are first to use Unique


ClearAll[x];
x = Table[Unique["x"], {10}]
(* {x7, x8, x9, x10, x11, x12, x13, x14, x15, x16} *)

The good thing is, that when some of your variables xn are already defined, Unique will not return them. It always gives you fresh, unused symbols.


The other thing you should consider is, that x[1] can be used like a symbol too, although it isn't one. Therefore


ClearAll[x];
vars = Table[x[i], {i, 10}]
(* Out[15]= {x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10]} *)


Can be used as valid variables too. In any case you should watch out that your variables are not assigned to values accidently. This is a common source of errors if you use them in combination with Solve or its friends.


Why did I use x= in the first example and vars= in the second one?


Let's take a very simple example


a = b[1];
OwnValues[a]
(*
{HoldPattern[a] :> b[1]}
*)


and now we assume that the b would be an a, than we would get an OwnValue-rule like


HoldPattern[a] :> a[1]

Therefore, the moment you use a an substitution process starts which is only stopped by the $RecursionLimit, because a is evaluated into a[1] which again contains an a in the front. This is repeatedly replaced.


Therefore, if you want to use the second approach, don't call it like x = Table[x[i], {i, 10}].


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...