Skip to main content

notebooks - Can I enter the traditional form for Binomial as input in an expression?


Is there a way to enter the traditional form of a binomial coefficient, i.e. ${n \choose k}$ instead of Binomial[n,k], like I would enter a radical sign $\sqrt{x}$ using Ctrl-Shift-2? I would like to enter it that way in a notebook, and see it in that form in the input as well as output equations, just like the radical. I know that I can use TraditionalForm to convert it on output, but I don't need to do that to see radicals instead of Sqrt.



Answer



You could do it using the following (this is the first version of the answer; don't use it if you want the more complete solution below):


SetOptions[EvaluationNotebook[],InputAliases->{"bn"->
FormBox[TemplateBox[{"\[SelectionPlaceholder]",
"\[Placeholder]"},"Binomial"],InputForm]}]

Then enter escbnesc to get a placeholder that you can tab through:


pic



Then enter the numbers and press shift-enter to evaluate.


Edit


To make the output appear formatted without invoking TraditionalForm, you'd have to define a wrapper function and its style. I'll set the keyboard shortcut in a way that doesn't erase previous definitions.


ClearAll[myBinomial]

appearance[x_, y_] := TemplateBox[{x, y}, "myBinomial",
DisplayFunction :> (RowBox[{"(", "\[NoBreak]",
GridBox[{{#1}, {#2}}, RowSpacings -> 1, ColumnSpacings -> 1,
RowAlignments -> Baseline, ColumnAlignments -> Center],
"\[NoBreak]", ")"}] &),

InterpretationFunction :> (RowBox[{"myBinomial", "[",
RowBox[{#1, ",", #2}], "]"}] &)
]

myBinomial[n_?NumericQ, k_?NumericQ] := Binomial[n, k]

myBinomial /: MakeBoxes[myBinomial[n_, k_], StandardForm] :=
appearance[ToBoxes[n], ToBoxes[k]]

SetOptions[EvaluationNotebook[],

InputAliases ->
DeleteDuplicates@
Join[{"bn" ->
appearance["\[SelectionPlaceholder]", "\[Placeholder]"]},
InputAliases /.
Quiet[Options[EvaluationNotebook[], InputAliases]] /.
InputAliases -> {}]
]

Now the template appears as before, but when the function arguments aren't numerical, it's also displayed in 2D form. One could add additional definitions to myBinomial depending on what cases you want the 2D display to apply to. Whenever there is no definition for myBinomial, it is left unevaluated and will be displayed in the formatted style.



Update in response to comment:


Similar templates can also be created for other two-dimensional symbols using other types of brackets. As an example, here are shortcuts for StirlingS1 and StirlingS2 that can be entered as escs1esc and escs2esc:


appearanceS1[x_, y_] := 
TemplateBox[{x, y}, "myStirlingS1",
DisplayFunction :> (StyleBox[
RowBox[{"[", "\[NoBreak]",
GridBox[{{#1}, {#2}}, RowSpacings -> 1, ColumnSpacings -> 1,
RowAlignments -> Baseline, ColumnAlignments -> Center],
"\[NoBreak]", "]"}], SpanMaxSize -> Infinity] &),
InterpretationFunction :> (RowBox[{"myStirlingS1", "[",

RowBox[{#1, ",", #2}], "]"}] &)]

myStirlingS1[n_?NumericQ, k_?NumericQ] := StirlingS1[n, k]

myStirlingS1 /: MakeBoxes[myStirlingS1[n_, k_], StandardForm] :=
appearanceS1[ToBoxes[n], ToBoxes[k]]

appearanceS2[x_, y_] :=
TemplateBox[{x, y}, "myStirlingS2",
DisplayFunction :> (StyleBox[

RowBox[{"{", "\[NoBreak]",
GridBox[{{#1}, {#2}}, RowSpacings -> 1, ColumnSpacings -> 1,
RowAlignments -> Baseline, ColumnAlignments -> Center],
"\[NoBreak]", "}"}], SpanMaxSize -> Infinity] &),
InterpretationFunction :> (RowBox[{"myStirlingS2", "[",
RowBox[{#1, ",", #2}], "]"}] &)]

myStirlingS2[n_?NumericQ, k_?NumericQ] := StirlingS2[n, k]

myStirlingS2 /: MakeBoxes[myStirlingS2[n_, k_], StandardForm] :=

appearanceS2[ToBoxes[n], ToBoxes[k]]

SetOptions[EvaluationNotebook[],
InputAliases ->
DeleteDuplicates@
Join[{"s1" ->
appearanceS1["\[SelectionPlaceholder]", "\[Placeholder]"],
"s2" -> appearanceS2["\[SelectionPlaceholder]",
"\[Placeholder]"]},
InputAliases /.

Quiet[Options[EvaluationNotebook[], InputAliases]] /.
InputAliases -> {}]
]

In these definitions, I added one additional ingredient: the square and curly brackets for these symbols are not automatically extensible, so they don't grow like the round brackets used in Binomial. To fix this, I added a StyleBox with option SpanMaxSize -> Infinity.


Also, the shortcuts are be appended to the InputAliases without erasing previous definitions. To make the shortcuts work, this step has to be done after defining the wrapper functions appearance and appearanceS1/S2.


With this, you can get output like this:


s1


for StirlingS1 and


s2



for StirlingS2.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...