Skip to main content

evaluation - Replacement inside held expression


I wish to make a replacement inside a held expression:


f[x_Real] := x^2;
Hold[{2., 3.}] /. n_Real :> f[n]

The desired output is Hold[{4., 9.}], but I get Hold[{f[2.], f[3.]}] instead. What is the best way to make such a replacement without evaluation of the held expression?



Answer




Generally, you want the Trott-Strzebonski in-place evaluation technique:


f[x_Real]:=x^2;
Hold[{Hold[2.],Hold[3.]}]/.n_Real:>With[{eval = f[n]},eval/;True]

(* Hold[{Hold[4.],Hold[9.]}] *)

It will inject the evaluated r.h.s. into an arbitrarily deep location in the held expression, where the expression was found that matched the rule pattern. This is in contrast with Evaluate, which is only effective on the first level inside Hold (won't work in the example above). Note that you may evaluate some things and not evaluate others:


g[x_] := x^3;
Hold[{Hold[2.], Hold[3.]}] /. n_Real :> With[{eval = f[n]}, g[eval] /; True]


(* Hold[{Hold[g[4.]], Hold[g[9.]]}] *)

The basic idea is to exploit the semantics of rules with local variables shared between the body of With and the condition, but within the context of local rules. Since the condition is True, it forced the eval variable to be evaluated inside the declaration part of With, while the code inside the Condition , here the body of With (g[eval]), is treated then as normally the r.h.s. of RuleDelayed is. It is important that With is used, since it can inject into unevaluated expressions. Module and Block also have the shared variable semantics, but wouldn't work here: while their declaration part would evaluate, they would not be able to communicate that result to their body that remains unevaluated (more precisely, only the part of the body that is inside Condition will remain unevaluated - see below). The body of With above was not evaluated either, however With injects the evaluated part ( eval here) into it - this is why the g function above remained unevaluated when the rule applied. This can be further illustrated by the following:


Hold[{Hold[2.],Hold[3.]}]/.n_Real:>Module[{eval=f[n]},
With[{eval = eval},g[eval]/;True]]

(* Hold[{Hold[g[4.]],Hold[g[9.]]}] *)

Note b.t.w. that only the part of code inside With that is inside Condition is considered a part of the "composite rule" and therefore not evaluated. So,


Hold[{Hold[2.],Hold[3.]}]/.n_Real:>Module[{eval = f[n]},

With[{eval = eval},Print[eval];g[eval]/;True]]

(* print: 4. *)
(* print: 9. *)
(* Hold[{Hold[g[4.]],Hold[g[9.]]}] *)

But


Hold[{Hold[2.],Hold[3.]}]/.n_Real:>Module[{eval = f[n]},
With[{eval = eval},(Print[eval];g[eval])/;True]]


(* Hold[{Hold[Print[4.];g[4.]],Hold[Print[9.];g[9.]]}] *)

This should further clarify this mechanism.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...